Isotopes : principles and applications /

Guardado en:
Detalles Bibliográficos
Autor principal: Faure, Gunter
Otros Autores: Mensing, Teresa M.
Formato: Desconocido
Lenguaje:Español
Publicado: Hoboken : Wiley, 2005.
Edición:3rd ed.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
Tabla de Contenidos:
  • Part 1. Principles of Atomic Physics. 1. Nuclear Systematics. 1.1. Discovery of Radioactivity
  • 1.2. Internal Structure of Atoms
  • 1.3. Origin of the Elements
  • 2. Decay Modes of Radionuclides. 2.1. Beta-Decay
  • 2.2. Alpha-Decay
  • 2.3. Spontaneous and Induced Fission
  • 3. Radioactive Decay. 3.1. Law of Radioactivity
  • 3.2. Radiation Detectors
  • 3.3. Growth of Radioactive Daughters
  • 3.4. Units of Radioactivity and Dosage
  • 3.5. Medical Effects of Ionizing Radiation
  • 3.6. Sources of Environmental Radioactivity
  • 3.7. Nuclear Reactions
  • 3.8. Neutron Activation Analysis
  • 4. Geochronometry. 4.1. Growth of Radiogenic Daughters
  • 4.2. Assumptions for Dating
  • 4.3. Fitting of Isochrons
  • 4.4. Mass Spectrometry and Isotope Dilution
  • Part 2. Radiogenic Isotope Geochronometers. 5. The Rb–Sr Method. 5.1. Geochemistry of Rb and Sr
  • 5.2. Principles of Dating
  • 5.3. Rb–Sr Isochrons
  • 5.4. Dating Metamorphic Rocks
  • 5.5. Dating Sedimentary Rocks
  • 6. The K–Ar Method. 6.1. Principles and Methodology
  • 6.2. Retention of 40Ar by Minerals
  • 6.3. K–Ar Isochrons
  • 6.4. Volcanic Rocks of Tertiary Age
  • 6.5. Dating Sedimentary Rocks
  • 6.6. Metamorphic Veil
  • 6.7. Precambrian Timescales
  • 7. The 40Ar*/ 39Ar Method. 7.1. Principles and Methodology
  • 7.2. Incremental Heating Technique
  • 7.3. Excess 40Ar
  • 7.4. Argon Isotope Correlation Diagram
  • 7.5. Laser Ablation
  • 7.6. Sedimentary Rocks
  • 7.7. Metasedimentary Rocks
  • 7.8. Metamorphic Rocks: Broken Hill, N.S.W., Australia
  • 7.9. Thermochronometry: Haliburton Highlands, Ontario, Canada
  • 8. The K–Ca Method. 8.1. Principles and Methodology
  • 8.2. Isotope Geochemistry of Calcium
  • 9. The Sm–Nd Method
  • 9.1. Geochemistry of Sm and Nd
  • 9.2. Principles and Methodology
  • 9.3. Dating by the Sm–Nd Method
  • 9.4. Meteorites and Martian Rocks
  • 9.5. Lunar Rocks
  • 10. The U–Pb, Th–Pb, and Pb–Pb Methods. 10.1. Geochemistry of U and Th
  • 10.2. Decay of U and Th Isotopes
  • 10.3. Principles and Methodology
  • 10.4. U,Th–Pb Dates, Boulder Creek Batholith, Colorado
  • 10.5. Wetherill’s Concordia
  • 10.6. Alternative Pb Loss Models
  • 10.7. Refinements in Analytical Methods
  • 10.8. Dating Detrital Zircon Grains
  • 10.9. Tera–Wasserburg Concordia
  • 10.10. U–Pb, Th–Pb, and Pb–Pb Isochrons (Granite Mountains, Wyoming)
  • 10.11. Pb–Pb Dating of Carbonate Rocks
  • 10.12. U–Pb and Th–Pb Isochrons of Carbonate Rocks
  • 11. The Common-Lead Method. 11.1. The Holmes–Houtermans Model
  • 11.2. Dating Common Lead
  • 11.3. Dating K-Feldspar
  • 11.4. Anomalous Leads in Galena
  • 11.5. Lead–Zinc Deposits, Southeastern Missouri
  • 11.6. Multistage Leads
  • 12. The Lu–Hf Method. 12.1. Geochemistry of Lu and Hf
  • 12.2. Principles and Methodology
  • 12.3. CHUR and Epsilon
  • 12.4. Model Hf Dates Derived from CHUR
  • 12.5. Applications of Lu–Hf Dating
  • 13. The Re–Os Method. 13.1. Rhenium and Osmium in Terrestrial and Extraterrestrial Rocks
  • 13.2. Principles and Methodology
  • 13.3. Molybdenite and 187Re–187Os Isochrons
  • 13.4. Meteorites and CHUR-Os
  • 13.5. The Cu–Ni Sulfide Ores, Noril’sk, Siberia
  • 13.6. Origin of Other Sulfide Ore Deposits
  • 13.7. Metallic PGE Minerals
  • 13.8. Gold Deposits of the Witwatersrand, South Africa
  • 13.9. The Pt–Os Method
  • 14. The La–Ce Method. 14.1. Geochemistry of La and Ce
  • 14.2. Principles and Methodology
  • 14.3. La–Ce Isochrons
  • 14.4. Meteorites and CHUR-Ce
  • 14.5. Volcanic Rocks
  • 14.6. Cerium in the Oceans
  • 15. The La–Ba Method. 15.1. Geochemistry of La and Ba
  • 15.2. Principles and Methodology
  • 15.3. Amitsoq Gneiss, West Greenland
  • 15.4. Mustikkamaki Pegmatite, Finland
  • Part 3. Geochemistry of Radiogenic Isotopes. 16. Mixing Theory. 16.1. Chemical Compositions of Mixtures
  • 16.2. Isotopic Mixtures of Sr
  • 16.3. Isotopic Mixtures of Sr and Nd
  • 16.4. Three-Component Isotopic Mixtures
  • 16.5. Applications
  • 17. Origin of Igneous Rocks. 17.1. The Plume Theory
  • 17.2. Magma Sources in the Mantle
  • 17.3. Midocean Ridge Basalt
  • 17.4. Basalt and Rhyolite of Iceland
  • 17.5. The Hawaiian Islands
  • 17.6. HIMU Magma Sources of Polynesia
  • 17.7. Subduction Zones
  • 17.8. Continental Flood Basalt
  • 17.9. Alkali-Rich Lavas
  • 17.10. Origin of Granite
  • 18. Water and Sediment. 18.1. Strontium in Streams
  • 18.2. Sediment in Streams
  • 18.3. Zaire and Amazon Rivers
  • 19. The Oceans. 19.1. Strontium in the Phanerozoic Oceans
  • 19.2. Strontium in the Precambrian Oceans
  • 19.3. Neodymium in the Oceans
  • 19.4. Lead in the Oceans
  • 19.5. Osmium in Continental Runoff
  • 19.6. Osmium in the Oceans
  • 19.7. Hafnium in the Oceans
  • Part 4. Short-Lived Radionuclides. 20. Uranium/Thorium-Series Disequilibria. 20.1. 238U/234U–230Th-Series Geochronometers
  • 20.2. Radium
  • 20.3. Protactinium
  • 20.4. Lead-210
  • 20.5. Archeology and Anthropology
  • 20.6. Volcanic Rocks
  • 20.7. Magma Formation
  • 21. Helium and Tritium. 21.1. U–Th/He Method of Dating
  • 21.2. Thermochronometry
  • 21.3. He Dating of Iron-Ore Deposits
  • 21.4. Tritium–3He Dating
  • 21.5. Meteorites and Oceanic Basalt
  • 21.6. Continental Crust
  • 22. Radiation-Damage Methods. 22.1. Alpha-Decay
  • 22.2. Fission Tracks
  • 22.3. Applications of Fission-Track Dates
  • 22.4. Thermoluminescence
  • 22.5. Electron-Spin Resonance
  • 23. Cosmogenic Radionuclides. 23.1. Carbon-14 (Radiocarbon)
  • 23.2. Beryllium-10 and Aluminum-26 (Atmospheric)
  • 23.3. Exposure Dating (10Be and 26Al)
  • 23.4. Cosmogenic and Thermonuclear 36Cl
  • 23.5. Meteorites
  • 23.6. Other Long-Lived Cosmogenic Radionuclides
  • 24. Extinct Radionuclides. 24.1. The Pd–Ag Chronometer
  • 24.2. The Al–Mg Chronometer
  • 24.3. The Hf–W Chronometer
  • 24.4. FUN in the Solar Nebula
  • 25. Thermonuclear Radionuclides. 25.1. Fission Products and Transuranium Elements
  • 25.2. Strontium-90 in the Environment
  • 25.3. Cesium-137 in the Environment
  • 25.4. Arctic Ocean: 90Sr/137Cs, 239,240Pu, and 241Am
  • Part 5. Fractionation of Stable Isotopes. 26. Hydrogen and Oxygen. 26.1. Atomic Properties
  • 26.2. Mathematical Relations
  • 26.3. Meteoric Precipitation
  • 26.4. Paleothermometry (Carbonates)
  • 26.5. Silicate Minerals and Rocks
  • 26.6. Water–Rock Interactions (Rocks)
  • 26.7. Water–Rock Interactions (Water)
  • 26.8. Clay Minerals
  • 26.9. Marine Carbonates
  • 26.10. Marine Phosphates
  • 26.11. Biogenic Silica and Hydroxides of Fe and Al
  • 26.12. Chert (Phanerozoic and Precambrian)
  • 26.13. Extraterrestrial Rocks
  • 27. Carbon. 27.1. Biosphere
  • 27.2. Life in the Precambrian Oceans
  • 27.3. Fossil Fuel
  • 27.4. Carbon-Isotope Stratigraphy (Phanerozoic)
  • 27.5. Precambrian Carbonates
  • 27.6. Igneous and Metamorphic Rocks
  • 27.7. Extraterrestrial Carbon
  • 27.8. Search for Life on Mars
  • 28. Nitrogen. 28.1. Geochemistry
  • 28.2. Isotope Fractionation
  • 28.3. Nitrogen on the Surface of the Earth
  • 28.4. Fossil Fuels
  • 28.5. Igneous Rocks and the Mantle
  • 28.6. Ultramafic Xenoliths
  • 28.7. Diamonds
  • 28.8. Meteorites
  • 28.9. Moon
  • 28.10. Mars
  • 29. Sulfur. 29.1. Isotope Geochemistry
  • 29.2. Biogenic Isotope Fractionation
  • 29.3. Sulfur in Recent Sediment
  • 29.4. Fossil Fuels
  • 29.5. Native Sulfur Deposits
  • 29.6. Sedimentary Rocks of Precambrian Age
  • 29.7. Isotopic Evolution of Marine Sulfate
  • 29.8. Igneous Rocks
  • 29.9. Sulfide Ore Deposits
  • 29.10. Sulfur in the Environment
  • 29.11. Mass-Independent Isotope Fractionation
  • 30. Boron and Other Elements. 30.1. Boron
  • 30.2. Lithium
  • 30.3. Silicon
  • 30.4. Chlorine.