Hydrothermal processes and mineral systems /

Guardado en:
Detalles Bibliográficos
Autor principal: Pirajno, Franco
Formato: Desconocido
Lenguaje:Español
Publicado: Berlin : Springer, 2010.
Edición:1st ed.; repr.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 152180000a22002890004500
003 WAA
005 20220329062834.0
006 a||||fr|||| 001 0
007 ta
008 t ag-|||||r|||| 001 0 spa d
020 |a 9781402086120 
040 |c WAA  |a WAA 
041 |a spa 
100 1 |a Pirajno, Franco  |9 16121 
245 1 0 |a Hydrothermal processes and mineral systems /   |c Franco Pirajno 
250 |a 1st ed.; repr. 
260 |a Berlin :   |b Springer,   |c 2010. 
300 |a 1250 p. :   |b tbls., mapas ;   |c 25 cm. 
500 |a Incluye índice analítico 
505 |a 1. Water and Hydrothermal Fluids on Earth. 1.1. Introduction -- 1.2. Origin of Water; Sea and Surface Waters -- 1.2.1. Seawater -- 1.2.2. Surface Water -- 1.2.3. Groundwater -- 1.3. Structure and Properties of Water; Hydration and Hydrolysis -- 1.4. Hydrothermal Fluids -- 1.4.1. Solubility and Boiling -- 1.4.2. Acid-Base Nomenclature -- 1.4.3. Redox Potential -- 1.4.4. Chemical Potential, Chemical Activity, Fugacity, Oxygen Fugacity -- 1.4.5. Hot Springs -- 1.4.6. Fluid Inclusions -- 1.4.7. Dissolved Constituents and Metals Partitioning in Hydrothermal Solutions -- 1.4.8. The Role of Complex Ions and Ligands in Hydrothermal Fluids -- 1.4.9. Complex Ions in Hydrothermal Solutions -- 1.4.10. Precipitation of Solutes and Metal Deposition -- 1.4.11. Isotopic Tracers -- 2. Hydrothermal Processes and Wall Rock Alteration -- 2.1. Introduction -- 2.1.1. The Main Components of a Hydrothermal System -- 2.1.2. Magma Degassing and Magmatic Hydrothermal Systems -- 2.2. Role of Volatiles in Granitic Magmas -- 2.3. Hydrothermal Alteration -- 2.3.1. Hydrogen Ion Metasomatism (Hydrolytic Alteration) and Base Cation Exchange -- 2.3.2. Styles and Types of Hydrothermal Alteration -- 2.4. Intrusion-Related Alkali Metasomatism -- 2.4.1. Sodic Metasomatism and Albitites -- 2.4.2. Potassic Metasomatism and Microclinites -- 2.5. Alkali Metasomatism (Fenites) in Anorogenic Ring Complexes -- 2.5.1. Fenites -- 2.6. Alteration in Porphyry Systems -- 2.6.1. Lowell-Guilbert and Breccia Pipe Models -- 2.6.2. Diorite Model -- 2.6.3. Hydrothermal Alteration in Climax-Type Porphyry Mo Systems -- 2.7. Skarns -- 2.8. Alteration in Epithermal Systems -- 2.8.1. Siliceous Precipitates, Self-Sealing and Hydrothermal Breccias -- 2.9. Hydrothermal Alteration in Submarine Mineral Systems -- 2.9.1. Hydrothermal Alteration in Kuroko-Type Mineral Systems -- 2.9.2. Oceanic Crust Hydrothermal Metamorphism -- 2.10. Other Types of Alteration -- 2.10.1. Tourmalinisation -- 2.10.2. Serpentinisation and Talc-Carbonate Alteration -- 2.10.3. Hematitisation and Fe-Rich Alteration -- 2.10.4. Carbonatisation and Dolomitisation -- 2.11. Metamorphism of Hydrothermally Altered Rock -- 2.12. Geochemical Signatures and Isotopic Tracers -- 2.12.1. Geochemistry -- 2.12.2. Isotopic Tracers -- 2.13. Detection of Hydrothermal Alteration from Spectral Remote Sensing -- 3. Tectonic Settings, Geodynamics and Temporal Evolution of Hydrothermal Mineral Systems. 3.1. Introduction -- 3.2. Tectonic Settings and Geodynamics of Mineral Systems -- 3.2.1. Convergent Plate Boundaries; Arc and Back-Arc Settings, Collision Tectonics -- 3.2.2. Divergent Plate Boundaries; Mid-Oceanic Ridges, Passive Margins and Continental Rifting -- 3.2.3. Mantle Plumes Tectonics and Hydrothermal Systems -- 3.3. Metallogeny and Geodynamics -- 3.4. Temporal Evolution of Ore Systems, Supercontinent Cycles and Global Metallogeny – 4. Intrusion-Related Hydrothermal Mineral Systems. 4.1. Introduction -- 4.2. Intrusion-Related Hydrothermal Mineral Systems and Granitic Magmatism -- 4.3. Greisen Ore Systems -- 4.3.1. Greisenisation Processes -- 4.3.2. Geochemistry -- 4.3.3. Greisen-Style Mineral Systems -- 4.3.4. Sn and W Geochemistry in the Greisen System and Deposition of Cassiterite and Wolframite -- 4.3.5. Tin Deposits Associated with the Felsic Phase of the Bushveld Igneous Complex, South Africa -- 4.3.6. The Sn-W Deposits of Southwest England, Cornwall and Portugal -- 4.3.7. The Greisen Systems of the Tasman Fold Belt System -- 4.3.8. The East Kemptville Sn Greisen, Nova Scotia, Canada -- 4.3.9. The Brandberg West Greisen Vein Systems, Namibia -- 4.3.10. The Kalguta Mo-W-Be-Bi Greisen System, Southeastern Altai (Russia) -- 4.4. Intrusion-Related Gold, Polymetallic and Uraniferous Vein Systems and Breccia Pipes -- 4.4.1. Scheelite Dome, an Intrusion-Related Au Deposit, Yukon, Canada -- 4.4.2. The Kidston Breccia Pipe, Queensland, Australia -- 4.4.3. Uraniferous Vein Systems -- 4.4.4. Sabie-Pilgrim’s Rest, South Africa -- 4.4.5. Capricorn Orogen Structurally Controlled Hydrothermal Vein (Base and Precious Metals), Western Australia -- 4.4.6. Polymetallic Vein Systems of the Altai (Siberia) and Northwestern Mongolia (Yustid Rift Zone) -- 4.5. Hydrothermal Systems Associated with Alkaline Magmatism and Anorogenic Ring Complexes -- 4.5.1. Tectonic Settings, Ages and Controls of Intracontinental Alkaline Magmatism in Africa -- 4.5.2. Ore Systems of Alkaline Ring Complexes -- 4.6. Iron Oxide-Copper-Gold-Rare Earth Elements-Uranium Mineral Systems -- 4.6.1. Olympic Dam, South Australia -- 4.6.2. Vergenoeg Fe Oxides-Fluorite Deposit, South Africa -- 4.6.3. The Palabora Complex (South Africa) -- 4.6.4. Bayan Obo REE-Nb-Fe Deposit, Inner Mongolia, China -- 4.6.5. Candelaria, Punta Del Cobre District, Chilean Coastal Belt -- 5. Porphyry Systems; Fossil and Active Epithermal Systems. 5.1. Introduction -- 5.2. Porphyry Systems -- 5.2.1. Porphyry Systems of Convergent Margins -- 5.2.2. Porphyry Systems in Intracontinental Extensional Tectonic Settings and Volcanic Rifted Margins -- 5.2.3. The Oldest Porphyry Systems -- 5.3. Fossil and Active Epithermal Systems -- 5.3.1. Fossil Epithermal Systems -- 5.3.2. Ladolam Epithermal System, Lihir Island, Papua New Guinea -- 5.3.3. Hauraki Goldfield, Coromandel Peninsula, New Zealand -- 5.3.4. The Epithermal Systems of the Biga Peninsula, Northwestern Anatolia -- 5.3.5. Epithermal Systems in the South China Fold Belt -- 5.3.6. The El Indio-Pascua Wpithermal Belt, Chile -- 5.3.7. Epithermal Systems in the Northern Great Basin, USA. -- 5.3.8. The Oldest Epithermal Systems, Archaean Pilbara and Yilgarn Cratons, Western Australia -- 5.4. Active Epithermal Systems (Geothermal Fields) -- 5.4.1. Kamchatka Peninsula and Kurile Islands -- 5.4.2. Geothermal Systems of the Taupo Volcanic Zone, New Zealand -- 5.4.3. Geysers-Clear Lake Geothermal System, California, USA -- 5.4.4. The Yellowstone National Park Geothermal System, USA -- 5.4.5. Salton Sea -- 5.4.6. Lake Tanganyika -- 6. Skarn Systems. 6.1. Introduction -- 6.2. Copper Skarns -- 6.2.1. Bingham -- 6.2.2. Yerington -- 6.3. Sn-W and W Skarns -- 6.3.1. Moina Sn-W Deposit -- 6.3.2. King Island Scheelite Deposit -- 6.4. Proterozoic W Skarns in the Gascoyne Complex, Western Australia -- 6.5. Gold Skarns -- 6.5.1. Navachab, Namibia -- 6.5.2. Gold Skarns in China -- 6.6. Zinc Skarns -- 6.7. Molybdenum Skarns -- 6.8. Iron Skarns -- 6.9. Iron, Au, Cu-Mo Skarns in the Yangzte (Chiangjiang) River Valley, China -- 6.10. The Geodynamic Setting of Skarn (and Porphyry) Metallogenesis in China – 7. Submarine Hydrothermal Mineral Systems. 7.1. Introduction -- 7.2. Physiography of the Ocean Floor -- 7.2.1 Mid-Ocean Ridges -- 7.2.2. Transform Faults and Fracture Zones -- 7.2.3. Seamounts and Volcanic Chains -- 7.3. Birth, Life and Death of an Ocean Basin -- 7.4. Oceanic Lithosphere and Ophiolites -- 7.4.1. Ophiolites -- 7.5. Submarine Hydrothermal Systems: Spreading Centres, Island Arcs and Seamounts -- 7.5.1. Hydrothermal Processes, Nature of Submarine Hydrothermal Fluids and Anatomy of a Seafloor Sulphide Deposit -- 7.5.2. Hydrothermal Systems at Spreading Centres -- 7.5.3. Subduction-Related Submarine Hydrothermal Systems (Island Arcs, Intraoceanic and Intracontinental Back-Arc Basins) -- 7.6. Oceanic Crust-Related (Ophiolite) Hydrothermal Mineral Systems in the Geological Record -- 7.6.1. Massive Sulphide Deposits of the Samail Ophiolite, Oman -- 7.6.2. The Cu Deposits of Cyprus Island -- 7.6.3. The Besshi-Type Cu Deposits of the Matchless Amphibolite Belt, Namibia -- 7.7. Volcanic-Associated Massive Sulphide Ore Systems (VMS) -- 7.7.1. Kuroko-Type Mineral Systems -- 7.7.2. The Kuroko Deposits of Japan -- 7.7.3. Noranda or Abitibi-Type Type Massive Sulphide Deposits -- 7.7.4. The VMS Deposits of Tasmania, Australia -- 7.7.5. The Iberian Pyrite Belt Massive Sulphide Deposits -- 7.7.6. The Oldest VMS: Pilbara Craton, Western Australia – 8. Metalliferous Sediments and Sedimentary Rock-Hosted Stratiform and /or Stratabound Hydrothermal Mineral Systems -- 8.1. Introduction -- 8.2. Basin Formation and Volcano-Sedimentary Successions in Continental Rifts -- 8.3. Fluid Dynamics in Sedimentary Basins -- 8.4. The East African Rift System -- 8.4.1. Lake Tanganyika -- 8.4.2. The Afar Triangle -- 8.5. Red Sea Brine Pools -- 8.5.1. The Atlantis II Deep -- 8.5.2. Mechanisms for the Formation of the Red Sea Metalliferous Sediments -- 8.6. Stratiform and Stratabound Sedimentary Rock-Hosted Disseminated Cu Sulphides Ore systems -- 8.6.1. The Central African Copperbelt -- 8.6.2. Stratabound Cu-Ag Deposits of the Irumide Belt in Southern Africa -- 8.6.3. Genetic Models -- 8.7. SEDEX Ore Systems -- 8.7.1. SEDEX Systems in Australia -- 8.7.2. SEDEX Systems in Southern Africa -- 8.8. Stratabound Carbonate Rock-Hosted Ore Systems -- 8.8.1. Mississippi Valley-Type Deposits of the Viburnum Trend (USA) -- 8.8.2. Alpine-Type Deposits -- 8.8.3. Irish Midlands Deposits -- 8.8.4. Models of Ore Genesis for MVT Ore Systems -- 8.8.5. The Pb-Zn-Cu-Ag-V Deposits of the Otavi Mountain Land, Namibia -- 8.8.6. MVT Deposits of the Lennard Shelf, Western Australia -- 8.8.7. MVT Deposits in the North Sea? -- 8.9. Iron Formations and Manganese Deposits -- 8.9.1. Iron Formation Ore Systems and Genetic Models -- 8.9.2. Granular Iron Formation of the Palaeoproteroroic Earaheedy Basin, Western Australia -- 8.9.3. Manganese Oxide Ores -- 8.10 Metalliferous Sediments on Seafloors -- 9. Orogenic, Amagmatic and Hydrothermal Mineral Systems of Uncertain Origin -- 9.1. Introduction -- 9.2. Orogenic and Metamorphism Related Lode Systems -- 9.2.1. Metamorphism and Fluid Generation; Metamorphogenic Hydrothermal Systems -- 9.2.2. Fluid Paths: Shear Zones, Faults and Thrust Faults -- 9.2.3. Veins in Metamorphic Rocks -- 9.2.4. Oxygen and Hydrogen Isotope Systematics -- 9.3. Orogenic Lodes -- 9.3.1. Yilgarn Craton, Western Australia -- 9.3.2. Hemlo Au-Mo Deposit, Abitibi-Wawa Greenstone Be 
650 0 |a Geología  |9 1052 
650 0 |a Mineralogía  |9 12177 
650 4 |a Hidrología  |9 5783 
942 |2 CDU  |c LIBRO 
999 |c 4964  |d 4964 
952 |0 0  |1 0  |2 CDU  |4 0  |6 553_200000000000000_P664  |7 0  |9 11589  |a 04  |b 04  |d 2018-04-19  |l 2  |o 553.2 P664  |p 32-01830  |q 2025-10-15  |r 2025-10-08  |s 2025-10-08  |w 2018-04-19  |y LIBRO 
952 |0 0  |1 0  |2 CDU  |4 0  |6 553_200000000000000_P664  |7 0  |9 11590  |a 04  |b 04  |d 2018-04-19  |l 0  |o 553.2 P664  |p 32-01750  |r 2018-04-19  |w 2018-04-19  |y LIBRO