|
|
|
|
| LEADER |
117290000a22002890004500 |
| 003 |
WAA |
| 005 |
20211202143435.0 |
| 006 |
a||||fr|||| 001 0 |
| 007 |
ta |
| 008 |
t ag-|||||r|||| 001 0 spa d |
| 020 |
|
|
|a 9780521530170
|
| 040 |
|
|
|c WAA
|a WAA
|
| 041 |
|
|
|a spa
|
| 100 |
1 |
|
|a Dickin, Alan P.
|9 15241
|
| 245 |
1 |
0 |
|a Radiogenic isotope geology /
|c Alan P. Dickin
|
| 250 |
|
|
|a 2nd ed.
|
| 260 |
|
|
|a Cambridge :
|b Cambridge university press,
|c 2005
|
| 300 |
|
|
|a 492 p. :
|b grafs. ;
|c 25 cm.
|
| 500 |
|
|
|a Incluye índice analítico
|
| 505 |
|
|
|a Preface and Acknowledgements / Alan P. Dickin -- 1. Nucleosynthesis and nuclear decay -- 1.1. The chart of the nuclides -- 1.2. Nucleosynthesis -- 1.2.1. Stellar evolution - 1.2.2. Stages in the nucleosynthesis of heavy elements -- 1.3. Radioactive decay -- 1.3.1. Isobaric decay -- 1.3.2. alpha- and heavy-particle decay -- 1.3.3. Nuclear fission and the Oklo natural reactor -- 1.4. The law of radioacive decay -- 1.4.1. Uniformitarianism -- 2. Mass spectrometry -- 2.1. chemical separation -- 2.1.1. Rb-Sr -- 2.1.2. Sm- Nd -- 2.1.3. Lu-Hf -- 2.1.4. Lead -- 2.2. Ion sources -- 2.2.1. Thermal ionisation -- 2.2.2. Plasma-source mass spectrometry -- 2.2.3. Mass fractionation -- 2.3. Magnetic-sector mass spectrometry -- 2.3.1. Ion optics -- 2.3.2. Detectors -- 2.3.3. Data collection -- 2.4. Isotope dilution -- 2.4.1. Analysis technique -- 2.4.2. Double spiking -- 2.5. Applications of MC-ICP-MS to radiogenic isotopes -- 2.5.1. Hf-W -- 2.5.2. Lu-Hf -- 2.5.3. U-Th -- 2.5.4. Pb-Pb -- 2.5.5. U-Pb -- 2.5.6. Sm-Nd -- 2.6. Isochron regression-line fitting -- 2.6.1. Types of regression fit -- 2.6.2. Regression fiffing with correlated errors -- 2.6.3. Errorchrons -- 2.6.4. Dealing with errorchrons -- 3. The Rb-Sr method -- 3.1. The Rb decay constant -- 3.2. Dating igneous rocks -- 3.2.1. Sr model ages -- 3.2.2. The isochron diagram -- 3.2.3. Erupted isochrons -- 3.2.4. Meterite chronology -- 3.3. Dating metamorphic rocks -- 3.3.1. Open mineral systems -- 3.3.2. Blocking temperatures -- 3.3.3. Open whole-rock systems -- 3.4. Dating ore deposits -- 3.5. Dating sedimentary rocks -- 3.5.1. Shales -- 3.5.2. Glauconite -- 3.6. Seawater evolution -- 3.6.1. Measurement of the curve -- 3.6.2. Modelling the fluxes -- 3.6.3. The effects of Himalayan erosion -- 4. The Sm-Nd methods -- 4.1. Sm-Nd isochrons -- 4.1.1. Meteorites -- 4.1.2. Low-grade meta-igneous rocks -- 4.1.3. High-grade metamorphic rocks -- 4.1.4. High-grade metamorphic minerals -- 4.2. Nd isotope evolution and model ages -- 4.2.1. Chondritic model ages -- 4.2.2. Depleted-mantle model ages -- 4.3. Model ages and crustal processes -- 4.3.1. Sedimentary systems -- 4.3.2. Meta-sedimentary systems -- 4.3.3. Meta-igneous systems - 4.3.4. Partially melted systems -- 4.4. The crustal-growth problem -- 4.4.1. Crustal-acretion ages -- 4.4.2. Sediment-provenance ages -- 4.4.3. Archean depleted mantle -- 4.4.4. Early archean crustal provices -- 4.5. Nd in the oceans -- 4.5.1. Modern seawater Nd -- 4.5.2. Ancient seawater Nd -- 4.5.3. Tertiary seawater Nd -- 4.5.4. -- 5. Leas isotopes -- 5.1. U-Pb isochrons -- 5.1.1. U-Pb dating of carbonates -- 5.2. U-Pb (zirocn) dating -- 5.2.1. Lead-loss models -- 5.2.2. Upper intersection ages -- 5.2.3. Ion-microprobe analysis -- 5.2.4. Lead 207/206 ages -- 5.2.5. Inherited zircon -- 5.2.6. alternative presentation of U-Pb data -- 5.2.7. Alternative U-Pb dating materials -- 5.3. Common (whoe-rock) Pb-Pb dating -- 5.3.1. The geochron -- 5.4. Model (galena) ages -- 5.4.1. The Holmes-Houtermans model -- 5.4.2. Conformable leads -- 5.4.3. Open-system Pb evolution -- 5.5. Pb-Pb dating and crustal evolution -- 5.5.1. Archean crustal evolution -- 5.5.2. Paleo-isochrons and metamorphic disturbance -- 5.6. Environmental Pb -- 5.6.1. anthropogenic Pb -- 5.6.2. Pb as an oceanographic tracer -- 5.6.3. Paleo-seawater Pb -- 6.Isotope geochemistry of oceanic volcanics -- 6.1. Isotopic tracing of mantle structure -- 6.1.1. Contamination and alteration -- 6.1.2. Diseuilibrium melting -- 6.1.3. Mantle plumes -- 6.1.4. Plum-pudding mantle -- 6.1.5. Marble-cake mantle -- 6.2. The Nd-Sr isotope diagram -- 6.2.1. Box models for MORB sources -- 6.2.2. The mantle array and OIB sources -- 6.2.3. Mantle convection models -- 6.3. Pb isotope geochemistry -- 6.3.1. Pb-Pb isochrons and the lead paradox -- 6.3.2. The development of HIMU -- 6.3.3. The terrestrial Th/U ratio -- 6.3.4. The upper-mantle u value re-examined -- 6.4. Mantle reservoirs in isotopic multispace -- 6.4.1. The mantle plane -- 6.4.2. The mantle tetrahedron -- 6.5. Identification of mantle components -- 6.5.1. HIMU -- 6.5.2. EMII -- 6.5.3. EMI -- 6.5.4. Kinematic models for mantle recycling -- 6.5.5. depleted OIB sources -- 6.6. Island arcs and mantle evolution -- 6.6.1. Two-component mixing models -- 6.6.2. Three-component mixing models -- 7. Isotope geochemistry of continental rocks -- 7.1. Mantle xenoliths -- 7.1.1. Mantle metasomatism -- 7.2. crustal contaminaion -- 7.2.1. Two-component mixing models -- 7.2.2. Melting in naural and experimental systems -- 7.2.3. Inversion modelling of magma suites -- 7.2.4. Lithospheric mantle contamination -- 7.2.5. Phenocrysts as records of magma evolution -- 7.3. Perogenesis of continental magmas -- 7.3.1. Kimberlites, carbonatites and lamproites -- 7.3.2. Aikali basalts -- 7.3.3. Flood basalts -- 7.3.4. Precambrian granitoids -- 7.3.5. Phanerozoic batholiths -- 8. Osmium isotopes -- 8.1. Osmium analysis -- 8.2. The Re-Os and Pt-Os decay schemes -- 8.2.1. The Re decay constant -- 8.2.2. Meteorite isochrons -- 8.2.3. Dating ores and rocks -- 8.2.4. Os normalisaion and the Pt-Os decay scheme -- 8.3. Mantle osmium -- 8.3.1. Bulk silicate Earth -- 8.3.2. Lithospheric evolution -- 8.3.3.Primitive upper mantle -- 8.3.4. Enriched plumes -- 8.3.5. Osmium from the core -- 8.3.6. Asthenospheric mantle heterogeneity -- 8.4. Petrogenesis and ore genesis -- 8.4.1. The bushveld complex -- 8.4.2. The stillwater complex -- 8.4.3. The sudbury igneous complex -- 8.4.4. Flood basalt provinces -- 8.5. Seawater osmium -- 8.5.1. Seawater Os isoope evolution -- 8.5.2. Os fluxes and residence times -- 9. Lu-Hf and other lithophile isotope systems -- 9.1. Lu-Hf geochronology -- 9.1.1. the Lu decay constant and the CHRU composition -- 9.1.2. Dating metamorphism --- 9.2. Mantle Hf evolution -- 9.2.1. Hf zircon analysis -- 9.2.2. Archean sediments -- 9.2.3. Western Greenland -- 9.2.4. Mantle depleton and recycling -- 9.2.5. Sediment recycling -- 9.3. Seawater hafnium -- 9.4. The La-Ce and La-Ba systems -- 9.4.1. LLa-Ba geochronology -- 9.4.2. La-Ce geochronology -- 9.4.3. Ce isotope geochemistry -- 9.5. The K-Ca system -- 10. K-Ar and Ar-Ar datin -- 10.1. The K-Ar dating method -- 10.1.1. Analytical techniques -- 10.1.2. Inherited argon and the K-Ar isochron diagram -- 10.1.3. Argon loss -- 10.2. The 40Ar-39Ar dating techique -- 10.2.1. 40Ar-39Ar measurement -- 10.2.2. Irradiation corrections -- 10.2.3. Step heating -- 10.2.4. Argon-loss events -- 10.2.5. Excess argon -- 10.2.6. Dating paleomagnetism: a case study -- 10.2.7. 39Ar recoil -- 10.2.8. Dating glauconite and clay minerals -- 10.2. Laser-probe dating -- 10.3.1. Method development -- 10.3.2. Applications of laser-probe dating -- 10.4. Timescale calibration -- 10.4.1. The magnetic-reversal timescale -- 10.4.2. The astronomical timescale -- 10.4.3. Intercalibration of decay constants -- 10.5. Thermochronometry -- 10.5.1. Arrhenius modelling -- 10.5.2. complex diffusion models -- 10.5.3. -feldspar thermochronometry -- 11. Rare-gas geochemistry -- 11.1. Helum -- 11.1.1. Mass spectrometry -- 11.1.2. Helium production in nature -- 11.1.3. Terrestrial primordial helium -- 11.1.4. The two-reservoir model -- 11.1.5. Crustal helium -- 11.1.6. Helium and volatiles -- 11.1.7. Helium and interplanetary dust -- 11.2. Neon -- 11.2.1. Neon production -- 11.2.2. Solar neon in the earth -- 11.2.3. Neon and helium -- 11.3. Argon -- 11.3.1. Terrestrial primordial argon -- 11.3.2. Neon-argon -- 11.3.3. Argon-38 -- 11.4. Xenon -- 11.4.1. Iodogenic xenon -- 11.4.2. Fissiogenic xenon -- 11.4.3. Solar xenon -- 12. U-series dating -- 12.1. Secular equilibrium and disequilibrium -- 12.2. Analytical methods -- 12.2.1. Mass spectrometry -- 12.3. Daghter-excess methods -- 12.3.1. 234U dating of carbonates -- 12.3.2. 234U dating of Fe-Mn crusts -- 12.3.3. 230Th sediment dating -- 12.3.4. 230Th-232Th -- 12.3.5. 230Th sediment stratigraphy - 12.3.6. 231Pa-230Th -- 12.3.7. 210Pb -- 12.4. Daughter-deficiency methods -- 12.4.1. 230Th: theory -- 12.4.2. 230Th: applications -- 12.4.3. 230Th: dirty calite -- 12.4.4. 231Pb -- 12.5. U-series dating of open systems -- 12.5.1. 231Oa.230Th -- 12.5.2. ESR-230Th -- 13. U-series geochemistry of igneous systems -- 13.1. Geochronology of volcanic rocks -- 13.1.1. The U-Th isochron diagram -- 13.1.2. Ra-Th isochron diagrams -- 13.1.3. U-series model age dating -- 13.2. Magma-chamber evolution -- 13.2.1. The Th isotope evolution diagram -- 13.2.2. Short-lived specis in magma evolutio -- 13.3. Mantle-melting models -- 13.3.1. Melting under ocean ridges -- 13.3.2. The effect of source convection -- 13.3.3. The effect of melting depth -- 13.3.4. The effect of source compostion -- 13.3.5. Evidence from short-lived species -- 13.3.6. Evidence for mantle upwelling rates -- 13.3.7. Evidence from Th-Sr and Th-U mantle arrays -- 13.3.8. Evidence for crustal melting and contamination -- 13.3.9. Sources of continental magmas -- 13.4. Subduction-zone processes -- 13.4.1. U-Th evidence -- 13.4.2. Ra-Th evidence -- 14. Cosmogenic nuclides -- 14.1. Carbo -14 -- 14.1.1. 14Cmeasurement by counting -- 14.1.2. The closed-system assumption -- 14.1.3. The initial-ratio assumption -- 14.1.4. Dendrochronology -- 14.1.5. Production and climaic effects -- 14.1.6. Radiocarbon in the oceans -- 14.1.7. The ocean conveyor belt -- 14.2.Accelerator mass spectrometry -- 14.2.1. Radiocarbon dating by AMS -- 14.3. Beryllium-10 -- 14.3.1. 10Be in the atmosphere -- 14.3.2. 10Be in soil profile -- 14.3.3. 10Be in snow and ice --- 14.3.4. 10 Be in the oceans -- 14.3.5. Comparison of 10Be with other tracers -- 14.3.6. 10Be in magmatic systems -- 14.4. chlorine-36 -- 14.5. Iodine-129 -- 14.6. In situ cosmogenic isotopes -- 14.6.1. Al-26 meteorite exposure ages -- 14.6.2. Al-Be terrestrial exosure ages -- 14.6.3. chlorine-36 exposure ges -- 15. Extinct radionuclides -- 15.1. Production and decay -- 15.2. Extant actinides -- 15.3. Xenon isotopes -- 15.3.1. I-X
|
| 650 |
|
0 |
|a Isótopo
|9 967
|
| 650 |
|
0 |
|a Geología
|9 1052
|
| 650 |
|
0 |
|a Geoquímica
|9 1054
|
| 942 |
|
|
|2 CDU
|c LIBRO
|
| 999 |
|
|
|c 4870
|d 4870
|
| 952 |
|
|
|0 0
|1 0
|2 CDU
|4 0
|6 550_420000000000000_D5601
|7 0
|9 10779
|a 04
|b 04
|c CART
|d 2018-03-26
|l 2
|m 1
|o 550.42 D5601
|p 32-01693
|r 2023-12-18
|s 2023-11-28
|w 2018-03-26
|y LIBRO
|
| 952 |
|
|
|0 0
|1 0
|2 CDU
|4 0
|6 550_420000000000000_D5601
|7 0
|9 10781
|a 04
|b 04
|d 2018-03-26
|l 0
|o 550.42 D5601
|p 32-01699
|r 2018-03-26
|w 2018-03-26
|y LIBRO NPP
|