Stratigraphic reservoir characterization for petroleum geologists, geophysicists and engineers : handbook of petroleum exploration and production /

Guardado en:
Detalles Bibliográficos
Autor principal: Slatt, Roger M.
Formato: Desconocido
Lenguaje:Español
Publicado: Amsterdam : Elsevier, 2006.
Edición:1st ed.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 114910000a22002890004500
003 WAA
005 20211129131252.0
006 a||||fr|||| 001 0
007 ta
008 t ag-|||||r|||| 001 0 spa d
020 |a 0444528180 
040 |c WAA  |a WAA 
041 |a spa 
100 1 |a Slatt, Roger M.  |9 21050 
245 1 0 |a Stratigraphic reservoir characterization for petroleum geologists, geophysicists and engineers :   |b handbook of petroleum exploration and production /   |c Roger M. Slatt 
250 |a 1st ed. 
260 |a Amsterdam :   |b Elsevier,   |c 2006. 
300 |a 478 p. :   |b il., fot., grafs., tbls. ;   |c 25 cm +   |e CD-ROM 
500 |a Incluye índice analítico 
505 |a 1. Basic principles and applications of reservoir characterization. 1.1. Introduction -- 1.2. Integrating expertise for reservoir characterization -- 1.3. Oil and gas: the main sources of global energy -- 1.3.1. Resources and reserves -- 1.3.2. Predicting the remaining resource -- 1.3.3. The US Geological survey assessment -- 1.3.4. Some significant comparisons -- 1.3.5. Energy consumption -- 1.4. The added value of reservoir characterization -- 1.5. Compartmentalization of oil and gas reservoirs -- 1.5.1. Compartmentalization - The exception, or the rule? -- 1.5.2. The significance of compartmentalization -- 1.5.3. The nature of compartmentalization -- 1.6. Depositional environments and types of deposits -- 1.6.1. Scales and styles of geologic reseervoir heterogeneity -- 1.6.2. Hierarchical scales of geologic heterogeneity (levels) -- 1.7. When is reservoir characterization important in the life cycle of a field? -- 1.7.1. The life cycle of a fiels -- 1.7.2. Applying reservoir characterization -- 1.8. The value of case studies -- 2. Tools and techiques for characterizing oil and gas reservoirs. 2.1. Static and dynamic properties of reservoirs -- 2.2. Measuring properties at different scales -- 2.3. Computers and the computing environment -- 2.4. Seismic.reflection and subsurface imaging -- 2.4.1. Two-dimensional (2D) seismic -- 2.4.2. Three-dimensional (3D) seismic -- 2.4.3. Four-dimensional (4D) seismic -- 2.4.4. Other seismic imaging techniques -- 2.4.5. Cross-well seismic investigation -- 2.4.6. Multicomponent seismic investigation -- 2.4.7. Some pitfalls in seismic analusis -- 2.5. Drilling and sampling a well -- 2.5.1. Conventional logs -- 2.5.2. Unconventional logs -- 2.5.2.1. Borehole-image logs -- 2.5.2.2. Dipmeter logs -- 2.5.2.3. Nuclea magnetic resonance (NMR) logs -- 3. Basic sedimentary rock properties. 3.1. Introduction -- 3.2. Classification and properties of sediments and sedimentary rocks -- 3.2.1. Siliciclastic sediments and sedimentary rocks -- 3.2.1.1. Texture -- 3.2.1.2. Composition -- 3.2.1.3. Porosity and permeability -- 3.2.1.4. Significance to reservoirs -- 3.2.2. chemical and biogenic sedimentary rocks -- 3.3. Sedimentary structures and their significance -- 3.3.1. Phsical sedimentary structures -- 3.3.1.1. structures formed by currents and waves -- 3.3.1.2. Structures formed by sediment loading -- 3.3.1.3. Erosional sedimentary structures -- 3.3.1.4. Sandstone injectites -- 3.3.2. Biogenic sedimentary structures -- 3.3.2.1. Body fossils -- 3.3.2.2. Traces fossils -- 3.3.3. Chemical sedimentary structures -- 4. Geologic time and stratigraphy. 4.1. Introduction -- 4.2. North American geologic time scale -- 4.3. Determinig the time frame in which a rock formed -- 4.3.1. Rediometric age dating ("te clocks in rocks") -- 4.3.2. Relative age-dating -- 4.4. Micropaleontology and biostratigraphy in reservoir characterization -- 4.4.1. High-resolution biostratigraphic zonation (biozones) -- 4.4.2. High-resolution well log and seismic correlaion from biostratigraphy -- 4.4.3. Determinig sedimentarion rtes from biostratigraphy -- 4.4.4. Biostratigraphy and condensed sections -- 4.4.5. Bostratigraphy and depositional environments -- 4.5. Walther's law and the succession f sedimentary facies -- 5. Geologic controls on reservoir quality. 5.1. Definitions -- 5.2. Examination and measurement of porosity and permeability -- 5.2.1. Direct observation -- 5.2.2. Direct measuremet -- 5.3. Primary grain-size control on reservoir quality -- 5.4. diagenesis and reservoir quality -- 5.5. Low-unit characterization for correlation and upscaling -- 5.5.1. Flow units that combine geological and petrophysical properties -- 5.5.2. Gunter et al.'s (1997) methodof flow-unit characterization -- 5.5.3. Upscaling using flow units -- 5.6. capillary pressure and its applications to reervoir characterization -- 5.6.1. Principles of capillary pressure -- 5.6.2. Routine laboratory measurement of capillary pressure -- 5.6.3. Relationship of Pc to pore-throat size and size distriburion -- 5.6.4. Relationships among porosity, permeability, pore-throat size, and Pc -- 5.6.5. Relations among capillary pressure, grain-size distribution and water saturation (Sw)-- 5.6.6. Conversion of air-Hg capillary-pressure measurements to reservoir condiions -- 5.6.7. Free water level and fluid saurations in a reservoir -- 5.6.8. Capillary and seal capacit - 5.6.9. Pore-throat size and capillary pressure form conventional core-analysis data -- 5.7. Seismic prosity measurement -- 6. Fluvial deposits and reservoirs. 6.1. Introduction -- 6.2. Braided flucial (river) -- 6.2.1. Processes and deposits -- 6.2.2. Reservoir examples -- 6.2.2.1. Murdoch field, North Sea -- 6.2.2.2. Rhoude el Baguel field, Algeria -- 6.2.2.3. Prudhoe Bay field, Alaska -- 6.3. Meandering-river deposits and reservoirs -- 6.3.1. Processes and deposits -- 6.3.2. Reservoir wxamples -- 6.3.2.1. Rulison field, Colorado -- 6.3.2.2. Stratton field, Texas -- 6.4. Incised-valley-fill deposits and reservoirs -- 6.4.1. Processes and deposits -- 6.4.2. Reservoir examples -- 6.4.2.1. Sooner Unit, Colorado -- 6.4.2.2. Sorrento field, Colorado -- 6.4.2.3. Southwes Stockholm field, Kansas -- 6.5. Combination fluvial reservoirs -- 7. Eolian (Windblown) deposits and reservoirs. 7.1. Introduction -- 7.2. Processes and deposits -- 7.3. Reservoir examples -- 7.3.1. Leman Sandstone gas reservoirs, North Sea -- 7.3.2. Rough gas field, North Sea -- 7.3.3. Pickerill field, North Sea -- 7.3.4. Painter Reservoir field, Wyoming -- 7.3.5. Tensleep Sandstone, Wyoming, USA -- 7.3.5.1. Location and outcrop characteristics -- 7.3.5.2. Outcrop 3D geologic model -- 7.3.5.3. Application to Tensleep subsurface reservoirs -- 8. Nondeltaic, shallow marine deposits and reservoirs. 8.1. Introduction -- 8.2. Shallow marine processes and envitonments -- 8.3. Shallow marine deposits -- 8.3.1. Offshore bars or sand ridges -- 8..2. Shoreface parasequences and successions -- 8.3.3. Marine-dominated, incised-valley-fill deposits -- 8.3.4. Significance of the origin of deposits -- 8.4. Shallow marine reservoirs -- 8.4.1. The puzzle of Hartzog Draw field -- 8.4.1.1. Hartzog draw field as an offshore sand ridge (shelf bar) (1984-1987) -- 8.4.1.2. Hartzog draw field as a lowstand shoreface deposit (1993-1994) -- 8.4.1.3. Hartzog draw field as a idal sand-bar deposit asssociated with incised vlley fill (1997) -- 8.4.2. Terry Sandstone, Denver Basin, Colrado -- 8.5. Barrier island deposits and reservoir -- 8.5.1. Complex processes and deposits -- 8.5.2. Bell creek and recluse fields, Montana and Wyoming, USA -- 9. Deltaic deposits and reservoirs. 9.1. Introduction -- 9.2. General deltaic processes, environments (physiographic zones), and types -- 9.3. River-dominated delta deposits and reservoirs -- 9.3.1. Processes and deposits -- 9.3.2. Reservoir example: Prudhoe bay field -- 9.4. Wave-dominated deltas -- 9.4.1. Processes and deposits -- 9.4.2. Reservoir example: Budare field -- 9.5. Tide-dominated deltas -- 9.5.1. Processes and deposits -- 9.5.2. Reservoir example: Lagunillas field -- 10. Deepwater deposits and reservoirs. 10.1. Introduction -- 10.1.1. Definitions -- 10.1.2. Global deepwater resources -- 10.2. Sedimentary processes opertive in deep water -- 10.3. Depositional models -- 10.4. Architectural elements of deepwater deposits -- 10.4.1. Sheet sandstones and reservoirs -- 10.4.1.1. Auger field -- 10.4.1.2. Mensa field -- 10.4.1.3. Ram Powell J. sand -- 10.4.1.4. Long beach Unit, Wilmington field -- 10.4.2. Canyon and channel-fill sandstones and reservoirs -- 10.4.2.1. Ram Powell N sand -- 10.4.2.2. Garden banks 191 field, northern Gulf of Mexico -- 10.4.2.3. Andrew field, UK Sector, north sea -- 10.4.2.4. Girassol feld, offshore Angola -- 10.4.3. Levee deposits and reservoirs -- 10.4.3.1. Ram Powell L sand reservoir -- 10.4.3.2. The M4.1 sand, Tahor field, northern Gulf of Mexico -- 10.4.3.3. Falcon field, northwestern Gulf of Mexico -- 11. Sequence stratigraphy for reservoir characterization. 11.1. Introduction -- 11.2. Basic definitins and concepts -- 11.2.1. Definitions and concepts related to the ocean water volumn in time and space -- 11.2.2. Definitions and concepts related to sediment accumulation within a sequence stratigraphic framework -- 11.2.3. Definitions and concepts related to temporal cyclicity of sealevel fluctuations and sediment accumulations, within a chronostratigraphic framework -- 11.3. Developing a sequence stratigraphic framework -- 11.3.1. Identifying a key surface as a starting point -- 11.3.2. Identifying and correlating systems tracts -- 11.3.3. Predicting vertical and lateral distribution of systems tracts and facies (reservoir, hdrocarbon source, and seal rocks) -- 11.4.High-frequency sequience stratigraphy -- 11.4.1. General -- 11.4.2. Applications to expplications to exploration nd reservoir development -- 11.4.2.1. Case study 1_ High-frequency sequience stratigraphy of the Cretaceus-age Lance formation-fox hills Sandstone-Lewis Shale system, Wyoming: identifying a petroleum system form expliration and development -- 11.4.2.2. Case stdy 2: Hig-frequency sequience stratigraphy of the Miocene Mt. Messenger formation, New Zealand: ourcrop analog of deepwater reservoirs -- Case study 3: High-frequency sequence stratigraph of a shoreface parasequience set: Cretaceous-age terry Sandstone, Hambert-aristocrat field, Colorado -- 11.4.2.4. Case study 4: High frequency sequence stratigraphy of incised-valley-fill reeervoirs: Pennsylvanian Glenn Pool field, Oklahoma, and Southewest Stockholm field, Kansas -- 12. An example of integrated characterization for Reservoir Development and exploration: Northeast Betara field, Jabung subbasin, South Sumatra, Indonesia. 12.1. Introduction -- 12.2. History of Northeast Betara field -- 12.3. Field characteristics -- 12.3.1. Total reservoir thickness -- 12.3.2. Sedimentary facies, properties and distribution -- 12.3.2.1.Lower braided-riv 
650 0 |a Petróleo  |9 3687 
650 0 |a Recursos no renovables  |9 22263 
650 0 |a Geología  |9 1052 
942 |2 CDU  |c LIBRO 
999 |c 4850  |d 4850 
952 |0 0  |1 0  |2 CDU  |4 0  |6 552_000000000000000_SL156  |7 0  |9 10736  |a 04  |b 04  |d 2018-03-26  |l 0  |o 552 Sl156  |p 32-01558  |r 2018-03-26  |w 2018-03-26  |y LIBRO 
952 |0 0  |1 0  |2 CDU  |4 0  |6 552_000000000000000_SL156  |7 0  |9 10737  |a 04  |b 04  |d 2018-03-26  |l 0  |o 552 Sl156  |p 32-01546  |r 2018-03-26  |w 2018-03-26  |y LIBRO NPP