Landscape erosion and evolution modeling /

Guardado en:
Detalles Bibliográficos
Autor principal: Harmon, Russell S.
Otros Autores: Doe, William W. III
Formato: Desconocido
Lenguaje:Español
Publicado: New York : Kluwr, 2001
Edición:[s.e.]
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 135400000a22002770004500
003 WAA
005 20220628062650.0
006 a||||fr|||| 001 0
007 ta
008 t ag-|||||r|||| 001 0 spa d
020 |a 0306467186 
040 |c WAA  |a WAA 
041 |a spa 
100 1 |a Harmon, Russell S.  |9 14475 
245 1 0 |a Landscape erosion and evolution modeling /   |c Edited by Russell S. Harmon and William W. Doe III  
250 |a [s.e.] 
260 |a New York :   |b Kluwr,   |c 2001 
300 |a 540 p. :   |b il., fot. ;   |c 24 cm. 
500 |a Incluye índice analítico 
505 |a Chapter 1. Introduction to Soil Erosion and Landscape Evolution Modeling -- 1. Soil Erosion Management and Model Development -- 2. Soil Erosion Processes -- 3. Models and Modeling Approaches -- 4. Linking Reality and Modeling -- Chapter 2. Erosion Problems on u.S. Army Training Lands. 1. Introduction -- 2. Regulatory Controls -- 3. Plant Material Development and Use on Military Lands -- 4. Physical Erosion and Sediment Controls -- Chapter 3. Effects of Freeze-Thaw Cycling on Soil Erosion. 1. Introduction -- 1.1. Landscape Evolution and Soil Erosion -- 1.2. Effects of Military Maneuvers on Soil-Erosion Mechanics -- 5. Applying Science in Erosion and Sediment Control -- 2. Effects of Soil Freeze-Thaw Cycling -- 2.1. Soil Freeze-Thaw Regimes and Associated Soil-Water Redistribution -- 2.2. Soil Erodibility -- 2.2.1. Soil Density -- 2.2.2. Soil Strength -- 2.3. Infiltration and Runoff -- 2.4. Soil-Surface Geometry -- 2.4.1. Soil Fluffing and Frost Heave -- 2.4.2. Rut and Rill Cross-Sectional Shape -- 3. Summary and Conclusions -- 4. Future Research Needs -- Chapter 4. Determination of Slope Displacement Mechanisms and Causes. 1. Introduction -- 2. Bluff Geometry and Stratigraphy -- 3. Ground Water Conditions -- 4. Soil Characteristics -- 5. Slope Displacement Monitoring Methods -- 6. Displacement Models -- 7. Causes of Displacement -- 7.1. Waves and Lake Levels -- 7.2. Precipitation -- 7.3. Air Temperatures and Ground Water Levels -- 8. Processes of Bluff Failure -- 9. Limit Equilibrium Analyses -- Chapter 5. Using Cosmogenic Nuclide Measurements in Sediments to Understand Background Rates of Erosion and Sediment Transport. 1. Introduction -- 2. Methods -- 3. Cosmogenic Nuclide Systematics and Interpretative Models -- 4. Case Studies -- 4.1. Drift Creek, Coast Range, Oregon -- 4.2. Trephina Creek, Northern Territory, Australia -- 4.3. Sandy Creek, Llano Uplift, Central Texas -- 4.4. Yuma Proving Ground, Southwestern Arizona -- 4.5. Nahal Yael, Southern Negev Desert, Israel -- 4.6. Camp Iron Mountain, Mojave Desert, California -- 5. Implications Of Sediment Cosmogenic Nuclide Measurements -- Chapter 6. Erosion Modeling. 1. Introduction -- 2. Empirical Models -- 2.1, USLE and Related Models -- 2.2. Alternatives to the USLE -- 3. Process-Based Models -- 3.1. Examples of Available Models -- 3.2. Steady State Versus Dynamic Simulations -- 3.3. Erosion Process Simulations -- 3.4. Grid Versus Poly~on Models -- 4. Model Testing -- 4.1. Sensitivity Analysis -- 4.2. Rationality -- 5. Model Validation -- 5.1. Uncertainty in Model Output -- 5.2. Importance of Topographic Position -- 5.3. Is Validation Feasible? -- 6. Model Application -- 6.1. Policy Evaluation -- 6.2. Evaluating Global Change -- 6.3. Slope Evolution -- Chapter 7. The Water Erosion Prediction Project (WEPP) Model. 1. Introduction -- 2. WEPP Model Development History -- 2.1. User Requirements -- 2.2. WEPP Experimental Research Program -- 3. WEPPHillslope Model Component -- 3.1. Introduction -- 3.2. Weather Generation -- 3.3. Irrigation -- 3.4. Hydrology -- 3.4.1. Infiltration and Runoff -- 3.4.2. Water Balance -- 3.5. Soil Component -- 3.5.1. Effective Hydraulic Conductivity -- 3.5.2. Soil Erodibility -- 3.6. Plant Growth -- 3.7. Residue Decomposition and Management -- 3.8. Overland Flow Hydraulics -- 3.9. Soil Erosion -- 4. WEPP Model Watershed Component -- 4.1. Introduction -- 4.2. Watershed Component Development -- 4.2.1. Conceptual Framework -- 4.2.2. Watershed Processes -- 4.2.3. Range of Application -- 4.3. Channel Hydrology Processes -- 4.3.1. Runoff Volume -- 4.3.2. Channel Water Balance -- 4.3.3. Channel Peak Runoff Rate -- 4.3.3.1. Modified Rational Equation -- 4.3.3.2. The CREAMS Equation -- 4.3.4. Effective Runoff Duration -- 4.4. Channel Erosion Processes -- 4.4.1. Effective Channel Length -- 4.4.2. Sediment Load -- 4.4.3. Sediment DetachmentlTransport/Deposition -- 4.5. Watershed Component Summary -- 5. Model Validation Study Results -- 6. Data and Model Uncertainty: Impacts on Model Evaluation and Application -- 7. WEPP Model Status and Current Activities -- Chapter 8. A Simulation Model for Erosion and Sediment Yield at the Hillslope Scale. 1. Introduction -- 1.1. Background -- 1.2. Purpose, Scope, and Limitations -- 2. Review of Erosion and Sediment Yield Modeling at the Hillslope Scale -- 2.1. Historical Perspective -- 2.2. Water Erosion Modeling on Non-Croplands -- 2.3. Examples of Rangeland, Hillslope Scale Water Erosion Models -- 2.4. Hillslope Erosion Processes -- 3. Development of the Hillslope Erosion Model -- 3.1. Overland Flow and Erosion Equations -- 3.2. Analytic Solutions and an Integrated Sediment Yield Equation -- 3.3. The Hillslope Erosion Model -- 4. Calibration and Validation of the Hillslope Erosion Model -- 4.1. Specified Parameters and Relationships -- 4.2. Optimizing the Relative (Dimensionless) Erodibility Parameter -- 4.3. Relative Erodibility by Soil Texture Class -- 4.4. Selected Validation Studies Using Data from the Walnut Gulch Experimental Watershed -- 5. Applications of the Hills/ope Erosion Model at the Fort Carson Military Reservation and the Pinon Canyon Maneuver Site -- 5.1. Introduction - The Fort Carson Military Reservation and the Pinon Canyon Maneuver Site -- 5.2. The Land Condition-Trend Analysis (LCTA) Program -- 5.3. Description of Hillslope Profile Data Collection -- 5.4. Estimation of Runoff Using the IRS Model -- 5.5. IRS Model Results and Analyses -- 5.6. Estimation of Sediment Yield using the Hills/ope Erosion Mode/- Application at Fort Carson and Pinon Canyon -- 5.7. Model Results and Analyses -- 5.8. Comparisons with Data from Erosion Control Structures -- 5.8.1. Fort Carson -- 5.8.2. Pinon Canyon Maneuver Site -- Chapter 9. Waterbots. 1. Introduction -- 2. The Waterbot Model -- 3. Hillslope Diffusion -- 4. Bedrock Erosion -- 5. Weathering -- 6. Other Landscape Transport Processes -- 7. Nonlinear Effects -- 8. Contributing Area and Hydrographs -- 9. Example - Setting up the DEM and Raining on the Black Mountains -- 10. Dimensionless Numbers in the Black Mountains -- 11. The Case of Gower Gulch: A Change in Flow Regime -- Chapter 10. Two-Dimensional Watershed-Scale Erosion Modeling with CASC2D. 1. Introduction -- 2. HydrologiclErosion Model CASC2D -- 2.1. Model development history -- 2.2. Main Features of CASC2D -- 2.3. Governing Equations -- 2.3.1. Two-Dimensional Overland Flow Routing -- 2.3.2. Open Channel Flow Routing -- 2.3.3. Overland Erosion -- 2.3.4. Channel Erosion and Sediment Transport -- 3. USDA-ARS Goodwin Creek Experimental Watershed -- 3.1. Watershed Characteristics -- 3.2. Watershed Climatology -- 3.3. Runoff of Water and Sediments -- 4. Calibration of CASC2D Erosion Parameters on Goodwin Creek -- 4.1. Background -- 4.2. Automated Calibration Using Shuffled Complex Evolution Method -- 4.2.1. Selection of Cost Function -- 4.2.2. Erosion Model Parameter Assignment -- 5. Erosion Model Performance -- 5.1. Automated Calibration Sensitivity to Cost Function -- 5.2. Split-Sample Calibration-Verification Test -- 5.3. Evaluation of CASC2D Performance at Internal Gaging Locations -- 5.3.1. Event of May 25, 1982 -- 5.3.2. Event ofJune 3-4, 1982 -- 5.4. Performance Under Heavy Rainfall -- 6. Discussion -- 6.1. Time-Variant Parameters -- 6.2. Ground Cover -- 6.3. Rill and Gully Erosion -- 6.4. Microtopography -- 6.5. Soil Crusting, Detachment, and Aggregate Breakdown -- 6.6. BankFailure -- 6.7. Spatial Calibration -- Chapter 11. Multiscale Soil Erosion Simulations for Land Use Management. 1. Introduction -- 2. Methods -- 2.1. Process-based Overland Water and Sediment Flow Model -- 2.1.1. Shallow Overland Flow -- 2.1.2. Erosion and Sediment Transport by Overland Flow -- 2.2. Path Sampling Solution Method -- 3. Simplified Special Cases and Model Extensions -- 3.1. Simple Erosion and Deposition Models -- 3.1.1. Detachment-limited Case -- 3.1.2. Transport Capacity-limited Case -- 3.2. Water Depth in Flat Areas and Depressions -- 3.3. Multiscale Water and Sediment Flow Simulation -- 4. Landscape Scale Erosion Prevention Planning and Design -- 4.1. Watershed Scale Erosion Risk Assessment and Evaluation of Conservation Strategies with Simple Distributed Models -- 4.2. Wetlands and Drainage -- 4.2.1. Topographic Potential for Wetlands -- 4.2.2.. Drainage Location Design -- 4.3. Concentrated Flow Erosion and Grassed Waterways -- 4.3.1. Concentrated Flow Erosion -- 4.3.2. Grassed Waterways -- Chapter 12. The Channel-Hillslope Integrated Landscape Development Model (CHILD). 1.· Introduction -- 2. Background -- 3. Model Formulation -- 3.1. Overview -- 3.2. Continuity of Mass and Topographic Change -- 3.3. Spatial Framework -- 3.4. Temporal Framework -- 3.4.1. Stochastic Rainfall: Example -- 3.5. Surface Hydrology and Runoff Generation -- 3.5.1. Hortonian (Infiltration-Excess) Runoff -- 3.5.2. Excess Storage Capacity Runoff -- 3.5.3. Saturation-Excess Runoff -- 3.5.4. Example -- 3.6. Hillslope Mass Transport -- 3.7. Water Erosion and Sediment Transport -- 3.7.1. Detachment-Limited Case -- 3.7.2. Transport-Limited Case -- 3.7.3. Mixed-Channel Systems -- 3.8. Extension to Multiple Grain Sizes -- 3.9. Deposition and Stratigraphy -- 3.9.1. Example -- 3.10. Lateral Stream Channel Migration (Meandering) -- 3.11. Floodplains: Overbank Sedimentation -- Chapter 13. Simulation of Streambank Erosion Processes with a Two-Dimensional Numerical Model. 1. Introduction -- 1.1. The Hasegawa Approach -- 1.2. The Odgaard Approach -- 1.3. The Hickin - Nanson Approach -- 1.4. Comparison s of Previous Research -- 2. Theoretical Analysis -- 2.1. Erosion Rate of River Bank Due to Flow -- 2.1.1. Submerged Weight -- 2.1.2. The Lift Force -- 2.1.3. The Cohesive Force -- 2.1.4. Particle Entrainment -- 2.1.5. Bank Erosion -- 2.2. Bank Erosion Due to Bank Failure -- 2.3. Conclusions - Theoretical Analysis -- 3. Numerical Simulation  
650 0 |a Geología  |9 1052 
650 4 |a Evolución  |9 1454 
700 |a Doe, William W. III  |9 14476 
942 |2 CDU  |c LIBRO 
999 |c 4748  |d 4748 
952 |0 0  |1 0  |2 CDU  |4 0  |6 551_300000000000000_H2286  |7 0  |9 9538  |a 04  |b 04  |d 2018-02-22  |l 0  |o 551.3 H2286  |p 32-01329  |r 2018-02-22  |w 2018-02-22  |y LIBRO NPP