Data mining : practical machine learning tools and techniques /

Guardado en:
Detalles Bibliográficos
Autor principal: Witten, Ian H.
Otros Autores: Frank, Eibe, Hall, Mark A., Pal, Christopher J.
Formato: Libro
Lenguaje:Español
Publicado: Boston (Mass.) : Elsevier, 2017
Edición:4th. ed.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 01690nam a22003017a 4500
003 WAA
006 a||||fr|||| 001 0
007 ta
008 t xxu-|||||r|||| 001 0 rpa d
999 |c 12525  |d 12525 
020 |a 9780128042915 
040 |a WAA  |c WAA 
041 |a spa 
100 1 |a Witten, Ian H.  |9 5640 
245 1 0 |a Data mining :   |b practical machine learning tools and techniques /   |c Ian H. Witten... [et al.] 
250 |a 4th. ed. 
260 3 0 |a Boston (Mass.) :   |b Elsevier,   |c 2017 
300 |a 621 p. 
505 |a Part I: Introduction to data mining. Chapter 1. What’s it all about? -- Chapter 2. Input: Concepts, instances, attributes -- Chapter 3. Output: Knowledge representation -- Chapter 4. Algorithms: The basic methods -- Chapter 5. Credibility: Evaluating what’s been learned -- Part II: More advanced machine learning schemes. Chapter 6. Trees and rules -- Chapter 7. Extending instance-based and linear models -- Chapter 8. Data transformations -- Chapter 9. Probabilistic methods -- Chapter 10. Deep learning -- Chapter 11. Beyond supervised and unsupervised learning -- Chapter 12 - Ensemble learning -- Chapter 13 - Moving on: applications and beyond -- Appendix A -- Theoretical foundations -- Appendix B - The WEKA workbench. 
650 4 |6 Informática  |9 13 
650 4 |a Inteligencia artificial  |9 2890 
650 4 |9 5646  |a Aprendizaje automático 
650 4 |9 5647  |a Minería de datos 
700 1 |a Frank, Eibe  |9 5641 
700 1 |a Hall, Mark A.  |9 5642 
700 1 |a Pal, Christopher J.  |9 5643 
942 |2 CDU  |c LIBRO 
952 |0 0  |1 0  |2 CDU  |4 0  |6 004_850000000000000_W784  |7 0  |9 10625  |a 09  |b 09  |d 2018-03-19  |l 0  |o 004.85 W784  |p 10-06141  |r 2018-03-19  |w 2018-03-19  |y LIBRO NPP