Usted se encuentra revisando un registro bibliográfico de la BDU Para conocer mas sobre la Base de Datos Unificada haga click en el ícono del home

Titulos:
Advanced mathematical analysis: periodic functions and distributions, complex analysis, Laplace transform and applications / Richard Beals
Idiomas:
eng
ISBN:
0387900659
Lugar de Edición:
New York:
Editor:
Springer,
Fecha de Edición:
c1973
Notas Formateada:
Chapter one: Basis concepts - 1.Sets and functions - 2.Real and complex numbers - 3.Sequence of real and complex numbers - 4.Series - 5.Metric spaces - 6.Compact sets - 7.Vector spaces Chapter two: Continuous functions - 1.Continuity, uniform continuity, and compactness - 2.Integration of complex-valued functions -3.Differential equations and the exponential function - 6.Trigonometric functions and the logarithm - 7.Functions of two variables - 8.Some infinitely differentiable functions Chapter three: Periodic functions and periodic distributions - 1.Continuous periodic functions - 2.Smooth periodic functions - 3.Translation, convolution, and approximation - 4.The Weierstrass approximation theorems - 5.Periodic distributions - 6.Determining the periodic distributions - 8.Summary of operations on periodic distributions Chapter four: Hilbert spaces and Fourier series - 1.An inner product in C , and the space L² - 2.Hilbert space - 3.Hilbert spaced of sequences - 4.Orthonormal bases - 5.Fourier series Chapter five: Applications of Fourier series -1. Fourier series of smooth periodic functions and periodic distributions - 2.Fourier series, convolutions, and approximation - 3.The heat equation: distribution and solutions - 4.The heat equation: classical solutions; derivation - 5.The wave equation - 6.Laplaces equation and the Dirichlet problem Chapter six: Complex analysis - 1.Complex differentiation - 2.Complex integration -3.The Cauchy integral formula - 4.The local behavior of a holomorphic function - 5.Isolated singularities - 6.Rational functions: Laurent expansions; residues - 7.Holomorphic functions in the unit disc Chapter seven: The Laplace transform - 1.Introduction - 2.The space L -3. The space L - 4. Characterization of distributions of type L - 5.Laplace transforms of functions - 6.Laplace transforms of distributions - 7.Differential equations
Palabras clave:
SERIES DE FOURIER; TRANSFORMACIONES DE LAPLACE; ESPACIOS DE HILBERT; FUNCIONES; ANALISIS MATEMATICO

Leader:
cam
Campo 003:
AR-BaIT
Campo 008:
270401t1973t xxu|||||||||||||||||eng||
Campo 020:
^a0387900659
Campo 040:
^aITBA^cITBA
Campo 041:
0 ^aeng
Campo 100:
1 ^aBeals, Richard^92827
Campo 245:
10^aAdvanced mathematical analysis:^cRichard Beals^bperiodic functions and distributions, complex analysis, Laplace transform and applications /
Campo 246:
Campo 260:
^aNew York:^bSpringer,^cc1973
Campo 300:
^ax, 230 p.
Campo 490:
1 ^aGraduate texts in mathematics^v12
Campo 505:
0 ^aChapter one: Basis concepts - 1.Sets and functions - 2.Real and complex numbers - 3.Sequence of real and complex numbers - 4.Series - 5.Metric spaces - 6.Compact sets - 7.Vector spaces Chapter two: Continuous functions - 1.Continuity, uniform continuity, and compactness - 2.Integration of complex-valued functions -3.Differential equations and the exponential function - 6.Trigonometric functions and the logarithm - 7.Functions of two variables - 8.Some infinitely differentiable functions Chapter three: Periodic functions and periodic distributions - 1.Continuous periodic functions - 2.Smooth periodic functions - 3.Translation, convolution, and approximation - 4.The Weierstrass approximation theorems - 5.Periodic distributions - 6.Determining the periodic distributions - 8.Summary of operations on periodic distributions Chapter four: Hilbert spaces and Fourier series - 1.An inner product in C , and the space L² - 2.Hilbert space - 3.Hilbert spaced of sequences - 4.Orthonormal bases - 5.Fourier series Chapter five: Applications of Fourier series -1. Fourier series of smooth periodic functions and periodic distributions - 2.Fourier series, convolutions, and approximation - 3.The heat equation: distribution and solutions - 4.The heat equation: classical solutions; derivation - 5.The wave equation - 6.Laplaces equation and the Dirichlet problem Chapter six: Complex analysis - 1.Complex differentiation - 2.Complex integration -3.The Cauchy integral formula - 4.The local behavior of a holomorphic function - 5.Isolated singularities - 6.Rational functions: Laurent expansions; residues - 7.Holomorphic functions in the unit disc Chapter seven: The Laplace transform - 1.Introduction - 2.The space L -3. The space L - 4. Characterization of distributions of type L - 5.Laplace transforms of functions - 6.Laplace transforms of distributions - 7.Differential equations
Campo 650:
4^91221^aSERIES DE FOURIER
Campo 650:
0^aTRANSFORMACIONES DE LAPLACE^91348
Campo 650:
4^919482^aESPACIOS DE HILBERT
Campo 650:
4^9605^aFUNCIONES
Campo 650:
0^aANALISIS MATEMATICO^981
Proveniencia:
^aInstituto Tecnológico Buenos Aires (ITBA) - Biblioteca
Seleccionar y guardar el registro Haga click en el botón del carrito
Institucion:
Instituto Tecnológico Buenos Aires (ITBA)
Dependencia:
Biblioteca

Compartir este registro en Redes Sociales

Seleccionar y guardar el registro Haga click en el botón del carrito