Herramienta de chequeo de registro xml obtenido desde Repositorio Digital Universitario (UNC)

XML

<oai_dc:dc xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:doc="http://www.lyncode.com/xoai" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:dc="http://purl.org/dc/elements/1.1/" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><identifier>I10-R14111086-22156</identifier><datestamp>2022-03-31T14:02:26Z</datestamp>
<dc:title>Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection</dc:title>
<dc:creator>Ramos, Ivana Carola</dc:creator>
<dc:creator>Briozzo, Carlos Bruno</dc:creator>
<dc:subject>Rayleigh-Bénard convection</dc:subject>
<dc:subject>Pseudospectral method</dc:subject>
<dc:description>We present the adaptation to non–free boundary conditions of a pseudospectral method based on the (complex) Fourier transform. The method is applied to the numerical integration of the Oberbeck–Boussinesq equations in a Rayleigh–Bénard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (R ∼ 10^9). These results are the basis for the later study, by the same method, of wet convection in a solar still.</dc:description>
<dc:description>publishedVersion</dc:description>
<dc:description>Fil: Ramos, Ivana Carola. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.</dc:description>
<dc:description>Fil: Briozzo, Carlos Bruno. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.</dc:description>
<dc:description>Física de los Fluidos y Plasma</dc:description>
<dc:date>2022-01-13T16:55:26Z</dc:date>
<dc:date>2022-01-13T16:55:26Z</dc:date>
<dc:date>2015</dc:date>
<dc:type>article</dc:type>
<dc:identifier>Ramos, I. C. y Briozzo, C. B. (2015). Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection. Papers in Physics, 7, 070015. http://dx.doi.org/10.4279/PIP.070015</dc:identifier>
<dc:identifier>http://hdl.handle.net/11086/22156</dc:identifier>
<dc:identifier>http://dx.doi.org/10.4279/PIP.070015</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights>Attribution 3.0 Unported (CC BY 3.0)</dc:rights>
<dc:rights>http://creativecommons.org/licenses/by/3.0/</dc:rights>
<dc:format>Electrónico y/o Digital</dc:format>
<dc:source>eISSN: 1852-4249</dc:source>
</oai_dc:dc>

Datos convertidos

{
    "id": "I10-R14111086-22156",
    "record_format": "dspace",
    "spelling": [
        "I10-R14111086-221562022-03-31T14:02:26Z Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh\u2013B\u00e9nard convection Ramos, Ivana Carola Briozzo, Carlos Bruno Rayleigh-B\u00e9nard convection Pseudospectral method We present the adaptation to non\u2013free boundary conditions of a pseudospectral method based on the (complex) Fourier transform. The method is applied to the numerical integration of the Oberbeck\u2013Boussinesq equations in a Rayleigh\u2013B\u00e9nard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (R \u223c 10^9). These results are the basis for the later study, by the same method, of wet convection in a solar still. publishedVersion Fil: Ramos, Ivana Carola. Universidad Nacional de C\u00f3rdoba. Facultad de Matem\u00e1tica, Astronom\u00eda y F\u00edsica; Argentina. Fil: Briozzo, Carlos Bruno. Universidad Nacional de C\u00f3rdoba. Facultad de Matem\u00e1tica, Astronom\u00eda y F\u00edsica; Argentina. F\u00edsica de los Fluidos y Plasma 2022-01-13T16:55:26Z 2022-01-13T16:55:26Z 2015 article Ramos, I. C. y Briozzo, C. B. (2015). Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh\u2013B\u00e9nard convection. Papers in Physics, 7, 070015. http:\/\/dx.doi.org\/10.4279\/PIP.070015 http:\/\/hdl.handle.net\/11086\/22156 http:\/\/dx.doi.org\/10.4279\/PIP.070015 eng Attribution 3.0 Unported (CC BY 3.0) http:\/\/creativecommons.org\/licenses\/by\/3.0\/ Electr\u00f3nico y\/o Digital eISSN: 1852-4249"
    ],
    "institution": [
        "Universidad Nacional de C\u00f3rdoba"
    ],
    "institution_str": "I-10",
    "repository_str": "R-141",
    "collection": [
        "Repositorio Digital Universitario (UNC)"
    ],
    "language": [
        "Ingl\u00e9s"
    ],
    "topic": [
        "Rayleigh-B\u00e9nard convection",
        "Pseudospectral method"
    ],
    "spellingShingle": [
        "Rayleigh-B\u00e9nard convection",
        "Pseudospectral method",
        "Ramos, Ivana Carola",
        "Briozzo, Carlos Bruno",
        "Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh\u2013B\u00e9nard convection"
    ],
    "topic_facet": [
        "Rayleigh-B\u00e9nard convection",
        "Pseudospectral method"
    ],
    "description": "We present the adaptation to non\u2013free boundary conditions of a pseudospectral method based on the (complex) Fourier transform. The method is applied to the numerical integration of the Oberbeck\u2013Boussinesq equations in a Rayleigh\u2013B\u00e9nard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (R \u223c 10^9). These results are the basis for the later study, by the same method, of wet convection in a solar still.",
    "format": [
        "article"
    ],
    "author": [
        "Ramos, Ivana Carola",
        "Briozzo, Carlos Bruno"
    ],
    "author_facet": [
        "Ramos, Ivana Carola",
        "Briozzo, Carlos Bruno"
    ],
    "author_sort": "Ramos, Ivana Carola",
    "title": "Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh\u2013B\u00e9nard convection",
    "title_short": "Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh\u2013B\u00e9nard convection",
    "title_full": "Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh\u2013B\u00e9nard convection",
    "title_fullStr": "Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh\u2013B\u00e9nard convection",
    "title_full_unstemmed": "Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh\u2013B\u00e9nard convection",
    "title_sort": "adapting a fourier pseudospectral method to dirichlet boundary conditions for rayleigh\u2013b\u00e9nard convection",
    "publishDate": [
        "2022"
    ],
    "url": [
        "http:\/\/hdl.handle.net\/11086\/22156",
        "http:\/\/dx.doi.org\/10.4279\/PIP.070015"
    ],
    "work_keys_str_mv": [
        "AT ramosivanacarola adaptingafourierpseudospectralmethodtodirichletboundaryconditionsforrayleighbenardconvection",
        "AT briozzocarlosbruno adaptingafourierpseudospectralmethodtodirichletboundaryconditionsforrayleighbenardconvection"
    ],
    "_version_": 1737484612542660608
}