Error estimates for anisotropic finite elements and applications
The finite element method is one of the most frequently used techniques to approximate the solution of partial differential equations. It consists in approximating the unknown solution by functions which are polynomials on each element of a given partition of the domain, made of triangles or quadril...
Guardado en:
Autor principal: | Durán, R.G. |
---|---|
Formato: | CONF |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_NIS06866_v3_n_p1181_Duran |
Aporte de: |
Ejemplares similares
-
Error estimates for anisotropic finite elements and applications
por: Duran, Ricardo Guillermo
Publicado: (2006) -
Anisotropic error estimates for an interpolant defined via moments
por: Acosta, G., et al. -
Anisotropic error estimates for an interpolant defined via moments
por: Acosta Rodriguez, Gabriel, et al.
Publicado: (2008) -
Interpolation error estimates for edge elements on anisotropic meshes
por: Lombardi, Ariel L.
Publicado: (2011) -
Interpolation error estimates for edge elements on anisotropic meshes
por: Lombardi, A.L.