Classifying computer session data using self-organizing maps
We propose an advanced solution to track persistent computer intruders inside a UNIX-based system by clustering sessions into groups bearing similar characteristics according to expertise and type of work. Our semi-supervised method based on Self-Organizing Map (SOM) accomplishes classification of f...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | CONF |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_97807695_v1_n_p48_Estrada |
Aporte de: |
id |
todo:paper_97807695_v1_n_p48_Estrada |
---|---|
record_format |
dspace |
spelling |
todo:paper_97807695_v1_n_p48_Estrada2023-10-03T16:42:48Z Classifying computer session data using self-organizing maps Estrada, V.C. Nakao, A. Segura, E.C. Computer scientists Computer sessions Keystroke patterns Novice programmer Semi-supervised method Artificial intelligence Biometrics Conformal mapping Self organizing maps We propose an advanced solution to track persistent computer intruders inside a UNIX-based system by clustering sessions into groups bearing similar characteristics according to expertise and type of work. Our semi-supervised method based on Self-Organizing Map (SOM) accomplishes classification of four types of users: computer scientists, experience programmers, non-programmers, and novice programmers. Our evaluation on a range of biometrics shows that using working directories yields better accuracy (>98.5%) than using most popular parameters like command use or keystroke patterns. © 2009 IEEE. Fil:Segura, E.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. CONF info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_97807695_v1_n_p48_Estrada |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Computer scientists Computer sessions Keystroke patterns Novice programmer Semi-supervised method Artificial intelligence Biometrics Conformal mapping Self organizing maps |
spellingShingle |
Computer scientists Computer sessions Keystroke patterns Novice programmer Semi-supervised method Artificial intelligence Biometrics Conformal mapping Self organizing maps Estrada, V.C. Nakao, A. Segura, E.C. Classifying computer session data using self-organizing maps |
topic_facet |
Computer scientists Computer sessions Keystroke patterns Novice programmer Semi-supervised method Artificial intelligence Biometrics Conformal mapping Self organizing maps |
description |
We propose an advanced solution to track persistent computer intruders inside a UNIX-based system by clustering sessions into groups bearing similar characteristics according to expertise and type of work. Our semi-supervised method based on Self-Organizing Map (SOM) accomplishes classification of four types of users: computer scientists, experience programmers, non-programmers, and novice programmers. Our evaluation on a range of biometrics shows that using working directories yields better accuracy (>98.5%) than using most popular parameters like command use or keystroke patterns. © 2009 IEEE. |
format |
CONF |
author |
Estrada, V.C. Nakao, A. Segura, E.C. |
author_facet |
Estrada, V.C. Nakao, A. Segura, E.C. |
author_sort |
Estrada, V.C. |
title |
Classifying computer session data using self-organizing maps |
title_short |
Classifying computer session data using self-organizing maps |
title_full |
Classifying computer session data using self-organizing maps |
title_fullStr |
Classifying computer session data using self-organizing maps |
title_full_unstemmed |
Classifying computer session data using self-organizing maps |
title_sort |
classifying computer session data using self-organizing maps |
url |
http://hdl.handle.net/20.500.12110/paper_97807695_v1_n_p48_Estrada |
work_keys_str_mv |
AT estradavc classifyingcomputersessiondatausingselforganizingmaps AT nakaoa classifyingcomputersessiondatausingselforganizingmaps AT seguraec classifyingcomputersessiondatausingselforganizingmaps |
_version_ |
1807318213704286208 |