Study of senone-based deep neural network approaches for spoken language recognition

This paper compares different approaches for using deep neural networks (DNNs) trained to predict senone posteriors for the task of spoken language recognition (SLR). These approaches have recently been found to outperform various baseline systems on different datasets, but they have not yet been co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ferrer, L., Lei, Y., McLaren, M., Scheffer, N.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_23299290_v24_n1_p105_Ferrer
Aporte de:

Ejemplares similares