Mitigating the effects of non-stationary unseen noises on language recognition performance
We introduce a new dataset for the study of the effect of highly non-stationary noises on language recognition (LR) performance. The dataset is based on the data from the 2009 Language Recognition Evaluation organized by the National Institute of Standards and Technology (NIST). Randomly selected no...
Guardado en:
Autores principales: | Ferrer, L., McLaren, M., Lawson, A., Graciarena, M., Noth E., Steidl S., Moller S., Ney H., Mobius B., Alibaba Group; Amazon; et al.; Facebook; Google; Telekom Innovation Laboratories |
---|---|
Formato: | CONF |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_2308457X_v2015-January_n_p3446_Ferrer |
Aporte de: |
Ejemplares similares
-
Mitigating the effects of non-stationary unseen noises on language recognition performance
Publicado: (2015) -
Spoken language recognition based on senone posteriors
por: Ferrer, L., et al. -
Spoken language recognition based on senone posteriors
Publicado: (2014) -
The SRI system for the NIST OpenSAD 2015 speech activity detection evaluation
por: Graciarena, M., et al. -
The SRI system for the NIST OpenSAD 2015 speech activity detection evaluation
Publicado: (2016)