An optimal mass transport approach for limits of eigenvalue problems for the fractional p-Laplacian

We find an interpretation using optimal mass transport theory for eigenvalue problems obtained as limits of the eigenvalue problems for the fractional p-Laplacian operators as p → +∞. We deal both with Dirichlet and Neumann boundary conditions. © 2015 by De Gruyter.

Guardado en:
Detalles Bibliográficos
Autores principales: Del Pezzo, L., Rossi, J., Saintier, N., Salort, A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_21919496_v4_n3_p235_DelPezzo
Aporte de:
Descripción
Sumario:We find an interpretation using optimal mass transport theory for eigenvalue problems obtained as limits of the eigenvalue problems for the fractional p-Laplacian operators as p → +∞. We deal both with Dirichlet and Neumann boundary conditions. © 2015 by De Gruyter.