Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires
High quality ZnSe nanowires (NWs) and complementary ZnSe/CdSe core/shell species have been synthesized using a recently developed solution-liquid-solid (SLS) growth technique. In particular, bismuth salts as opposed to pre-synthesized Bi or Au/Bi nanoparticles have been used to grow NWs at low tempe...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_20403364_v3_n8_p3145_Petchsang |
Aporte de: |
id |
todo:paper_20403364_v3_n8_p3145_Petchsang |
---|---|
record_format |
dspace |
spelling |
todo:paper_20403364_v3_n8_p3145_Petchsang2023-10-03T16:37:45Z Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires Petchsang, N. Shapoval, L. Vietmeyer, F. Yu, Y. Hodak, J.H. Tang, I.-M. Kosel, T.H. Kuno, M. Bismuth salts CdSe nanocrystals Core/shell Emission spectrums Growth techniques Growth time High quality Low temperatures ZnSe Nanowires Bismuth Cadmium alloys Cadmium compounds Emission spectroscopy Nanocrystals Transmission electron microscopy Wire Nanowires High quality ZnSe nanowires (NWs) and complementary ZnSe/CdSe core/shell species have been synthesized using a recently developed solution-liquid-solid (SLS) growth technique. In particular, bismuth salts as opposed to pre-synthesized Bi or Au/Bi nanoparticles have been used to grow NWs at low temperatures in solution. Resulting wires are characterized using transmission electron microscopy and possess mean ensemble diameters between 15 and 28 nm with accompanying lengths ranging from 4-10 μm. Subsequent solution-based overcoating chemistry results in ZnSe wires covered with CdSe nanocrystals. By varying the shell's growth time, different thicknesses can be obtained and range from 8 to 21 nm. More interestingly, the mean constituent CdSe nanocrystal diameter can be varied and results in size-dependent shell emission spectra. © 2011 The Royal Society of Chemistry. Fil:Hodak, J.H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_20403364_v3_n8_p3145_Petchsang |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Bismuth salts CdSe nanocrystals Core/shell Emission spectrums Growth techniques Growth time High quality Low temperatures ZnSe Nanowires Bismuth Cadmium alloys Cadmium compounds Emission spectroscopy Nanocrystals Transmission electron microscopy Wire Nanowires |
spellingShingle |
Bismuth salts CdSe nanocrystals Core/shell Emission spectrums Growth techniques Growth time High quality Low temperatures ZnSe Nanowires Bismuth Cadmium alloys Cadmium compounds Emission spectroscopy Nanocrystals Transmission electron microscopy Wire Nanowires Petchsang, N. Shapoval, L. Vietmeyer, F. Yu, Y. Hodak, J.H. Tang, I.-M. Kosel, T.H. Kuno, M. Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires |
topic_facet |
Bismuth salts CdSe nanocrystals Core/shell Emission spectrums Growth techniques Growth time High quality Low temperatures ZnSe Nanowires Bismuth Cadmium alloys Cadmium compounds Emission spectroscopy Nanocrystals Transmission electron microscopy Wire Nanowires |
description |
High quality ZnSe nanowires (NWs) and complementary ZnSe/CdSe core/shell species have been synthesized using a recently developed solution-liquid-solid (SLS) growth technique. In particular, bismuth salts as opposed to pre-synthesized Bi or Au/Bi nanoparticles have been used to grow NWs at low temperatures in solution. Resulting wires are characterized using transmission electron microscopy and possess mean ensemble diameters between 15 and 28 nm with accompanying lengths ranging from 4-10 μm. Subsequent solution-based overcoating chemistry results in ZnSe wires covered with CdSe nanocrystals. By varying the shell's growth time, different thicknesses can be obtained and range from 8 to 21 nm. More interestingly, the mean constituent CdSe nanocrystal diameter can be varied and results in size-dependent shell emission spectra. © 2011 The Royal Society of Chemistry. |
format |
JOUR |
author |
Petchsang, N. Shapoval, L. Vietmeyer, F. Yu, Y. Hodak, J.H. Tang, I.-M. Kosel, T.H. Kuno, M. |
author_facet |
Petchsang, N. Shapoval, L. Vietmeyer, F. Yu, Y. Hodak, J.H. Tang, I.-M. Kosel, T.H. Kuno, M. |
author_sort |
Petchsang, N. |
title |
Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires |
title_short |
Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires |
title_full |
Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires |
title_fullStr |
Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires |
title_full_unstemmed |
Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires |
title_sort |
low temperature solution-phase growth of znse and znse/cdse core/shell nanowires |
url |
http://hdl.handle.net/20.500.12110/paper_20403364_v3_n8_p3145_Petchsang |
work_keys_str_mv |
AT petchsangn lowtemperaturesolutionphasegrowthofznseandznsecdsecoreshellnanowires AT shapovall lowtemperaturesolutionphasegrowthofznseandznsecdsecoreshellnanowires AT vietmeyerf lowtemperaturesolutionphasegrowthofznseandznsecdsecoreshellnanowires AT yuy lowtemperaturesolutionphasegrowthofznseandznsecdsecoreshellnanowires AT hodakjh lowtemperaturesolutionphasegrowthofznseandznsecdsecoreshellnanowires AT tangim lowtemperaturesolutionphasegrowthofznseandznsecdsecoreshellnanowires AT koselth lowtemperaturesolutionphasegrowthofznseandznsecdsecoreshellnanowires AT kunom lowtemperaturesolutionphasegrowthofznseandznsecdsecoreshellnanowires |
_version_ |
1807316654462337024 |