Transmission properties of dual-period arrays of cylinders
We investigate the potential of dual-period structures to control and manipulate the transmitted intensity. We consider supergratings (periodic arrays with a compound unit cell) in which each period comprises several cylinders. We show that this kind of structures permits one to control the diffract...
Guardado en:
Autores principales: | , |
---|---|
Formato: | CONF |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15599450_v_n_p27_Skigin |
Aporte de: |
Sumario: | We investigate the potential of dual-period structures to control and manipulate the transmitted intensity. We consider supergratings (periodic arrays with a compound unit cell) in which each period comprises several cylinders. We show that this kind of structures permits one to control the diffracted response, regardless of the cylinder material and the incident polarization. A given diffraction order can be either enhanced or suppressed by appropriately choosing the geometrical parameters of the structure, and this property is basically a geometric effect. For subwavelength cylinders, if their axes are aligned in a plane tilted with respect to the periodicity direction, the structure behaves like a blazed grating in the sense of its capability to enhance the intensity in a pre-designed direction. This blazed-like behaviour is found for both incident polarization modes and for dielectric as well as for metallic cylinders. If the array is illuminated by an evanescent wave, the system exhibits resonances and the inhomogeneous wave is converted into propagating waves that radiate to the far field. This effect can be controlled by varying the geometrical parameters of the structure, such as the period and the inclination angle, what makes these structures good potential candidates for many applications. |
---|