Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions

Heme proteins are ubiquitous in nature and perform many diverse functions in all kingdoms of life. Many of these functions are related to large-scale conformational transitions and allosteric processes. Sampling of these large conformational changes is computationally very challenging. In this conte...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ramírez, C.L., Petruk, A., Bringas, M., Estrin, D.A., Roitberg, A.E., Marti, M.A., Capece, L.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15499618_v12_n7_p3390_Ramirez
Aporte de:
Descripción
Sumario:Heme proteins are ubiquitous in nature and perform many diverse functions in all kingdoms of life. Many of these functions are related to large-scale conformational transitions and allosteric processes. Sampling of these large conformational changes is computationally very challenging. In this context, coarse-grain simulations emerge as an efficient approach to explore the conformational landscape. In this work, we present a coarse-grained model of the heme group and thoroughly validate this model in different benchmark examples, which include the monomeric heme proteins myoglobin and neuroglobin and the tetrameric human hemoglobin where we evaluated the method's ability to explore conformational changes (as the formation of hexacoordinated species) and allosteric transitions (as the well-known R → T transition). The obtained results are compared with atomistic molecular dynamics simulations. Overall, the results indicate that this approach conserves the essential dynamical information on different allosteric processes. © 2016 American Chemical Society.