Anomalous diffusion: Exact solution of the generalized Langevin equation for harmonically bounded particle

We study the effect of a disordered or fractal environment in the irreversible dynamics of a harmonic oscillator. Starting from a generalized Langevin equation and using Laplace analysis, we derive exact expressions for the mean values, variances, and velocity autocorrelation function of the particl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Viñales, A.D., Despósito, M.A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_15393755_v73_n1_p_Vinales
Aporte de:
Descripción
Sumario:We study the effect of a disordered or fractal environment in the irreversible dynamics of a harmonic oscillator. Starting from a generalized Langevin equation and using Laplace analysis, we derive exact expressions for the mean values, variances, and velocity autocorrelation function of the particle in terms of generalized Mittag-Leffler functions. The long-time behaviors of these quantities are obtained and the presence of a whip-back effect is analyzed. © 2006 The American Physical Society.