The intrinsic fundamental group of a linear category

We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cibils, C., Redondo, M.J., Solotar, A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_1386923X_v15_n4_p735_Cibils
Aporte de:
id todo:paper_1386923X_v15_n4_p735_Cibils
record_format dspace
spelling todo:paper_1386923X_v15_n4_p735_Cibils2023-10-03T16:12:22Z The intrinsic fundamental group of a linear category Cibils, C. Redondo, M.J. Solotar, A. Fundamental group Hochschild-Mitchell Linear category Presentation Quiver Fundamental group Hochschild-Mitchell Linear category Presentation Quiver Algebra Mathematical techniques We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space. © 2010 Springer Science+Business Media B.V. Fil:Redondo, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solotar, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_1386923X_v15_n4_p735_Cibils
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fundamental group
Hochschild-Mitchell
Linear category
Presentation
Quiver
Fundamental group
Hochschild-Mitchell
Linear category
Presentation
Quiver
Algebra
Mathematical techniques
spellingShingle Fundamental group
Hochschild-Mitchell
Linear category
Presentation
Quiver
Fundamental group
Hochschild-Mitchell
Linear category
Presentation
Quiver
Algebra
Mathematical techniques
Cibils, C.
Redondo, M.J.
Solotar, A.
The intrinsic fundamental group of a linear category
topic_facet Fundamental group
Hochschild-Mitchell
Linear category
Presentation
Quiver
Fundamental group
Hochschild-Mitchell
Linear category
Presentation
Quiver
Algebra
Mathematical techniques
description We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space. © 2010 Springer Science+Business Media B.V.
format JOUR
author Cibils, C.
Redondo, M.J.
Solotar, A.
author_facet Cibils, C.
Redondo, M.J.
Solotar, A.
author_sort Cibils, C.
title The intrinsic fundamental group of a linear category
title_short The intrinsic fundamental group of a linear category
title_full The intrinsic fundamental group of a linear category
title_fullStr The intrinsic fundamental group of a linear category
title_full_unstemmed The intrinsic fundamental group of a linear category
title_sort intrinsic fundamental group of a linear category
url http://hdl.handle.net/20.500.12110/paper_1386923X_v15_n4_p735_Cibils
work_keys_str_mv AT cibilsc theintrinsicfundamentalgroupofalinearcategory
AT redondomj theintrinsicfundamentalgroupofalinearcategory
AT solotara theintrinsicfundamentalgroupofalinearcategory
AT cibilsc intrinsicfundamentalgroupofalinearcategory
AT redondomj intrinsicfundamentalgroupofalinearcategory
AT solotara intrinsicfundamentalgroupofalinearcategory
_version_ 1807323664351232000