Scattering from metallic surfaces having a finite number of rectangular grooves
A modal theory is presented for solving the problem of electromagnetic scattering from a surface consisting of a finite number of one-dimensional rectangular grooves in a metallic plane. The incident plane wave can be polarized with either its electric or its magnetic field along the grooves. The fo...
Guardado en:
Autores principales: | Depine, R.A., Skigin, D.C. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10847529_v11_n11_p2844_Depine |
Aporte de: |
Ejemplares similares
-
Scattering from metallic surfaces having a finite number of rectangular grooves
por: Depine, Ricardo Angel, et al.
Publicado: (1994) -
Numerical study of the eigenmodes of selective microdevices with multivalued corrugations
por: Skigin, D.C., et al. -
Numerical study of the eigenmodes of selective microdevices with multivalued corrugations
por: Skigin, Diana Carina, et al.
Publicado: (2001) -
Resonant effects in periodic gratings comprising a finite number of grooves in each period
por: Fantino, A.N., et al. -
Superdirective radiation from finite groove gratings
por: Skigin, D., et al.