A Neumann boundary-value problem on an unbounded interval
We study a Neumann boundary-value problem on the half line for a second order equation, in which the nonlinearity depends on the (unknown) Dirichlet boundary data of the solution. An existence result is obtained by an adapted version of the method of upper and lower solutions, together with a diagon...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10726691_v2008_n_p1_Amster |
Aporte de: |
Sumario: | We study a Neumann boundary-value problem on the half line for a second order equation, in which the nonlinearity depends on the (unknown) Dirichlet boundary data of the solution. An existence result is obtained by an adapted version of the method of upper and lower solutions, together with a diagonal argument. ©2008 Texas State University. |
---|