Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance

We study the existence of weak solutions to the equation Δpu = |u|p-2u + f(x, u) with the nonlinear boundary condition |∇u|p-2∂u/∂v = λ|u|p-2u - h(x, u). We assume Landesman-Lazer type conditions and use variational arguments to prove the existence of solutions.

Guardado en:
Detalles Bibliográficos
Autores principales: Martínez, S., Rossi, J.D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10726691_v2003_n_p1_Martinez
Aporte de:
Descripción
Sumario:We study the existence of weak solutions to the equation Δpu = |u|p-2u + f(x, u) with the nonlinear boundary condition |∇u|p-2∂u/∂v = λ|u|p-2u - h(x, u). We assume Landesman-Lazer type conditions and use variational arguments to prove the existence of solutions.