Subspaces with extra invariance nearest to observed data

Given an arbitrary finite set of data F={f1,…,fm}⊂L2(Rd) we prove the existence and show how to construct a “small shift invariant space” that is “closest” to the data F over certain class of closed subspaces of L2(Rd). The approximating subspace is required to have extra-invariance properties, that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cabrelli, C., Mosquera, C.A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10635203_v41_n2_p660_Cabrelli
Aporte de:

Ejemplares similares