On the minimum of a polynomial function on a basic closed semialgebraic set and applications
We give an explicit upper bound for the algebraic degree and an explicit lower bound for the absolute value of the minimum of a polynomial function on a compact connected component of a basic closed semialgebraic set when this minimum is not zero. We also present extensions of these results to nonco...
Guardado en:
Autores principales: | Jeronimo, G., Perrucci, D., Tsigaridas, E. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10526234_v23_n1_p241_Jeronimo |
Aporte de: |
Ejemplares similares
-
On the minimum of a polynomial function on a basic closed semialgebraic set and applications
por: Jeronimo, Gabriela Tali, et al.
Publicado: (2013) -
Single exponential path finding in semialgebraic sets part I: The case of a regular bounded hypersurface
Publicado: (1991) -
Single exponential path finding in semialgebraic sets part I: The case of a regular bounded hypersurface
por: Heintz, J., et al. -
Intrinsic complexity estimates in polynomial optimization
Publicado: (2014) -
Intrinsic complexity estimates in polynomial optimization
por: Bank, B., et al.