Ionization of argon by two-color laser pulses with coherent phase control
We present a joint experimental and theoretical study of ionization of argon atoms by a linearly polarized two-color laser field (λ1=800 nm, λ2=400 nm). Changing the relative phase φ between the two colors, the forward-backward asymmetry of the doubly differential momentum distribution of emitted el...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10502947_v92_n2_p_Arbo |
Aporte de: |
Sumario: | We present a joint experimental and theoretical study of ionization of argon atoms by a linearly polarized two-color laser field (λ1=800 nm, λ2=400 nm). Changing the relative phase φ between the two colors, the forward-backward asymmetry of the doubly differential momentum distribution of emitted electrons can be controlled. We find excellent agreement between the measurements and the solution of the time-dependent Schrödinger equation in the single-active electron approximation. Surprisingly we also find good agreement between the quantum and classical calculations of electron momentum distributions generated by lasers at optical wavelengths. © 2015 American Physical Society. |
---|