Decoherence of Bell states by local interactions with a dynamic spin environment

We study the evolution of a system of two qubits, each of which interacts locally with a spin chain with nontrivial internal Hamiltonian. We present an exact solution to this problem and analyze the dependence of decoherence on the distance between the interaction sites. In the strong coupling regim...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cormick, C., Paz, J.P.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10502947_v78_n1_p_Cormick
Aporte de:
Descripción
Sumario:We study the evolution of a system of two qubits, each of which interacts locally with a spin chain with nontrivial internal Hamiltonian. We present an exact solution to this problem and analyze the dependence of decoherence on the distance between the interaction sites. In the strong coupling regime we find that decoherence increases with increasing distance. In the weak coupling regime the dependence of decoherence with distance is not generic (i.e., it varies according to the initial state). Decoherence becomes independent of distance when the latter is over a saturation length l. Numerical results for the Ising chain suggest that the saturation scale is related to the correlation length ξ. For strong coupling we display evidence of the existence of non-Markovian effects (such as environment-induced interactions between the qubits). As a consequence the system can undergo a quasiperiodic sequence of "sudden deaths and revivals" of entanglement, with a time scale related to the distance between qubits. © 2008 The American Physical Society.