Late Cenozoic brittle deformation in the Southern Patagonian Andes: Record of plate coupling/decoupling during variable subduction?
The Andes of southern Patagonia experienced a Miocene shift towards faster and higher angle subduction followed by the approach and collision of the Chile oceanic ridge. We present a kinematic study characterizing palaeostress fields computed from brittle tectonics to better constrain upper crustal...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_09544879_v30_n4_p296_Barberon |
Aporte de: |
id |
todo:paper_09544879_v30_n4_p296_Barberon |
---|---|
record_format |
dspace |
spelling |
todo:paper_09544879_v30_n4_p296_Barberon2023-10-03T15:51:45Z Late Cenozoic brittle deformation in the Southern Patagonian Andes: Record of plate coupling/decoupling during variable subduction? Barberón, V. Sue, C. Ghiglione, M. Ronda, G. Aragón, E. brittle deformation geodynamics Patagonia plate coupling/decoupling Southern Andes tectonics brittle deformation Cenozoic geodynamics plate tectonics strike-slip fault subduction Andes Patagonia The Andes of southern Patagonia experienced a Miocene shift towards faster and higher angle subduction followed by the approach and collision of the Chile oceanic ridge. We present a kinematic study characterizing palaeostress fields computed from brittle tectonics to better constrain upper crustal deformation during this complex scenario. Although previous studies already suggested variable kinematics, it is striking that in a long-lasting subduction environment, the computed palaeostress tensors are mostly strike-slip (55%), while 35% are extensional, and only 10% compressive which are concentrated along a main frontal thrust. Cross-cutting relationships and synsedimentary deformation indicate that a long-lived strike-slip regime was punctuated by a lower Miocene extensional event in the foreland before the main compressional event. The results are discussed in contrasting geodynamic models of plate coupling/decoupling versus direction and rate of convergence of the subducting plate, to explain the main mechanisms that control back-arc deformation. © 2018 John Wiley & Sons Ltd JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09544879_v30_n4_p296_Barberon |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
brittle deformation geodynamics Patagonia plate coupling/decoupling Southern Andes tectonics brittle deformation Cenozoic geodynamics plate tectonics strike-slip fault subduction Andes Patagonia |
spellingShingle |
brittle deformation geodynamics Patagonia plate coupling/decoupling Southern Andes tectonics brittle deformation Cenozoic geodynamics plate tectonics strike-slip fault subduction Andes Patagonia Barberón, V. Sue, C. Ghiglione, M. Ronda, G. Aragón, E. Late Cenozoic brittle deformation in the Southern Patagonian Andes: Record of plate coupling/decoupling during variable subduction? |
topic_facet |
brittle deformation geodynamics Patagonia plate coupling/decoupling Southern Andes tectonics brittle deformation Cenozoic geodynamics plate tectonics strike-slip fault subduction Andes Patagonia |
description |
The Andes of southern Patagonia experienced a Miocene shift towards faster and higher angle subduction followed by the approach and collision of the Chile oceanic ridge. We present a kinematic study characterizing palaeostress fields computed from brittle tectonics to better constrain upper crustal deformation during this complex scenario. Although previous studies already suggested variable kinematics, it is striking that in a long-lasting subduction environment, the computed palaeostress tensors are mostly strike-slip (55%), while 35% are extensional, and only 10% compressive which are concentrated along a main frontal thrust. Cross-cutting relationships and synsedimentary deformation indicate that a long-lived strike-slip regime was punctuated by a lower Miocene extensional event in the foreland before the main compressional event. The results are discussed in contrasting geodynamic models of plate coupling/decoupling versus direction and rate of convergence of the subducting plate, to explain the main mechanisms that control back-arc deformation. © 2018 John Wiley & Sons Ltd |
format |
JOUR |
author |
Barberón, V. Sue, C. Ghiglione, M. Ronda, G. Aragón, E. |
author_facet |
Barberón, V. Sue, C. Ghiglione, M. Ronda, G. Aragón, E. |
author_sort |
Barberón, V. |
title |
Late Cenozoic brittle deformation in the Southern Patagonian Andes: Record of plate coupling/decoupling during variable subduction? |
title_short |
Late Cenozoic brittle deformation in the Southern Patagonian Andes: Record of plate coupling/decoupling during variable subduction? |
title_full |
Late Cenozoic brittle deformation in the Southern Patagonian Andes: Record of plate coupling/decoupling during variable subduction? |
title_fullStr |
Late Cenozoic brittle deformation in the Southern Patagonian Andes: Record of plate coupling/decoupling during variable subduction? |
title_full_unstemmed |
Late Cenozoic brittle deformation in the Southern Patagonian Andes: Record of plate coupling/decoupling during variable subduction? |
title_sort |
late cenozoic brittle deformation in the southern patagonian andes: record of plate coupling/decoupling during variable subduction? |
url |
http://hdl.handle.net/20.500.12110/paper_09544879_v30_n4_p296_Barberon |
work_keys_str_mv |
AT barberonv latecenozoicbrittledeformationinthesouthernpatagonianandesrecordofplatecouplingdecouplingduringvariablesubduction AT suec latecenozoicbrittledeformationinthesouthernpatagonianandesrecordofplatecouplingdecouplingduringvariablesubduction AT ghiglionem latecenozoicbrittledeformationinthesouthernpatagonianandesrecordofplatecouplingdecouplingduringvariablesubduction AT rondag latecenozoicbrittledeformationinthesouthernpatagonianandesrecordofplatecouplingdecouplingduringvariablesubduction AT aragone latecenozoicbrittledeformationinthesouthernpatagonianandesrecordofplatecouplingdecouplingduringvariablesubduction |
_version_ |
1807317988462821376 |