Numeric vs. symbolic homotopy algorithms in polynomial system solving: A case study
We consider a family of polynomial systems which arises in the analysis of the stationary solutions of a standard discretization of certain semi-linear second-order parabolic partial differential equations. We prove that this family is well-conditioned from the numeric point of view, and ill-conditi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0885064X_v21_n4_p502_DeLeo |
Aporte de: |
Sumario: | We consider a family of polynomial systems which arises in the analysis of the stationary solutions of a standard discretization of certain semi-linear second-order parabolic partial differential equations. We prove that this family is well-conditioned from the numeric point of view, and ill-conditioned from the symbolic point of view. We exhibit a polynomial-time numeric algorithm solving any member of this family, which significantly contrasts the exponential behavior of all known symbolic algorithms solving a generic instance of this family of systems. © 2005 Elsevier Inc. All rights reserved. |
---|