Sparse resultants and straight-line programs
We prove that the sparse resultant, redefined by D'Andrea and Sombra and by Esterov as a power of the classical sparse resultant, can be evaluated in a number of steps which is polynomial in its degree, its number of variables and the size of the exponents of the monomials in the Laurent polyno...
Guardado en:
Autores principales: | Jeronimo, G., Sabia, J. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07477171_v87_n_p14_Jeronimo |
Aporte de: |
Ejemplares similares
-
Sparse resultants and straight-line programs
por: Jeronimo, Gabriela Tali, et al.
Publicado: (2018) -
Computing multihomogeneous resultants using straight-line programs
por: Jeronimo, G., et al.
Publicado: (2007) -
Computing multihomogeneous resultants using straight-line programs
por: Jeronimo, G., et al. -
Computing multihomogeneous resultants using straight-line programs
por: Jeronimo, G., et al.
Publicado: (2007) -
Computing multihomogeneous resultants using straight-line programs
por: Jeronimo, Gabriela Tali, et al.
Publicado: (2007)