Bifurcation sets of the self-consistent flow in generalized SU(2) models
We analyze the possible bifurcations of the stationary points of the self-consistent flow on the Bloch sphere. We propose a generalized SU(2) model Hamiltonian for which, by means of a geometrically simple classification, we find the topologically invariant regions of the mean field flow in the spac...
Guardado en:
Autores principales: | Vignolo, C.E., Jezek, D.M., Hernandez, E.S. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_05562813_v38_n1_p506_Vignolo |
Aporte de: |
Ejemplares similares
-
Bifurcation sets of the self-consistent flow in generalized SU(2) models
por: Vignolo, Carlos Esteban, et al.
Publicado: (1988) -
Geometry and time scales of self-consistent orbits in a modified SU(2) model
por: Jezek, D.M., et al. -
Geometry and time scales of self-consistent orbits in a modified SU(2) model
por: Jezek, Dora Marta, et al.
Publicado: (1986) -
Determination of basins of attraction for SU(2) dissipative models
por: Hernández, E.S., et al. -
Self-consistent pseudopotentials in the thermodynamic limit. I. The correlation field
por: Hernandez, E.S., et al.