An inhomogeneous singular perturbation problem for the p(x)-Laplacian Dedicated to our dear friend and colleague Juan Luis Vázquez on the occasion of his 70th birthday
In this paper we study the following singular perturbation problem for the pϵ(x)-Laplacian: Δpϵ (x)uϵ:=div(|∇uϵ(x)|pϵ (x)-2∇ uϵ)=βϵ(uϵ)+fϵ,uϵ≥0, (Pϵ(fϵ, pϵ)) where ϵ>0, βϵ(s)=1/ϵβ(s/ϵ), with β a Lipschitz function satisfying β>0 in (0,1), β≡0 outside (0,1) and ∫β(s)ds=M. The functions...
Guardado en:
Autores principales: | Lederman, C., Wolanski, N. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0362546X_v138_n_p300_Lederman |
Aporte de: |
Ejemplares similares
-
An inhomogeneous singular perturbation problem for the p(x)-Laplacian Dedicated to our dear friend and colleague Juan Luis Vázquez on the occasion of his 70th birthday
por: Lederman, Claudia Beatriz, et al.
Publicado: (2016) -
Weak solutions and regularity of the interface in an inhomogeneous free boundary problem for the p (x)-Laplacian
por: Lederman, C., et al. -
Inhomogeneous minimization problems for the p(x)-Laplacian
por: Lederman, C., et al. -
Weak solutions and regularity of the interface in an inhomogeneous free boundary problem for the p (x)-Laplacian
por: Lederman, Claudia Beatriz, et al.
Publicado: (2017) -
Inhomogeneous minimization problems for the p(x)-Laplacian
Publicado: (2019)