On the first nontrivial eigenvalue of the ∞-laplacian with neumann boundary conditions
We study the limit as p → ∞ of the first non-zero eigenvalue of the p-Laplacian with Neumann boundary conditions in a smooth bounded domain U We prove that = 2=diam(U), where diam(U) denotes the diameter of U with respect to the geodesic distance in U. We can think of as the first eigenvalue of the...
Guardado en:
Autores principales: | Rossi, J.D., Saintier, N. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03621588_v42_n2_p613_Rossi |
Aporte de: |
Ejemplares similares
-
On the first nontrivial eigenvalue of the ∞-laplacian with neumann boundary conditions
por: Rossi, Julio Daniel
Publicado: (2016) -
The limit as p → + ∞ of the first eigenvalue for the p-Laplacian with mixed Dirichlet and Robin boundary conditions
por: Rossi, J.D., et al. -
The limit as p → + ∞ of the first eigenvalue for the p-Laplacian with mixed Dirichlet and Robin boundary conditions
por: Rossi, Julio Daniel
Publicado: (2015) -
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
por: Bonheure, D., et al. -
The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions
por: Del Pezzo, L.M., et al.