Global bifurcation for fractional p-Laplacian and an application
We prove the existence of an unbounded branch of solutions to the nonlinear non-local equation (Equation presented) bifurcating from the first eigenvalue. Here (-Δ)sp denotes the fractional p-Laplacian and Ω ⊂ ℝ1 is a bounded regular domain. The proof of the bifurcation results relies in computing t...
Guardado en:
Autores principales: | Del Pezzo, L.M., Quaas, A. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02322064_v35_n4_p411_DelPezzo |
Aporte de: |
Ejemplares similares
-
Global bifurcation for fractional p-Laplacian and an application
por: Del Pezzo, Leandro M.
Publicado: (2016) -
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
por: Del Pezzo, L.M., et al. -
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
por: Del Pezzo, Leandro M.
Publicado: (2017) -
Eigenvalues for systems of fractional p-Laplacians
por: Del Pezzo, L.M., et al. -
Eigenvalues for systems of fractional p-Laplacians
Publicado: (2018)