A Diagrammatic Representation of Phase Portraits and Bifurcation Diagrams of Two-Dimensional Dynamical Systems
We treat the problem of characterizing in a systematic way the qualitative features of two-dimensional dynamical systems. To that end, we construct a representation of the topological features of phase portraits by means of diagrams that discard their quantitative information. All codimension 1 bifu...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02181274_v27_n13_p_Roulet |
Aporte de: |
Sumario: | We treat the problem of characterizing in a systematic way the qualitative features of two-dimensional dynamical systems. To that end, we construct a representation of the topological features of phase portraits by means of diagrams that discard their quantitative information. All codimension 1 bifurcations are naturally embodied in the possible ways of transitioning smoothly between diagrams. We introduce a representation of bifurcation curves in parameter space that guides the proposition of bifurcation diagrams compatible with partial information about the system. © 2017 World Scientific Publishing Company. |
---|