Computing Chow Forms and Some Applications
We prove the existence of an algorithm that, from a finite set of polynomials defining an algebraic projective variety, computes the Chow form of its equidimensional component of the greatest dimension. Applying this algorithm, a finite set of polynomials defining the equidimensional component of th...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01966774_v41_n1_p52_Jeronimo |
Aporte de: |
Sumario: | We prove the existence of an algorithm that, from a finite set of polynomials defining an algebraic projective variety, computes the Chow form of its equidimensional component of the greatest dimension. Applying this algorithm, a finite set of polynomials defining the equidimensional component of the greatest dimension of an algebraic (projective or affine) variety can be computed. The complexities of the algorithms involved are lower than the complexities of the known algorithms solving the same tasks. This is due to a special way of coding output polynomials, called straight-line programs. © 2001 Academic Press. |
---|