Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field
This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CH...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01928651_v30_n13_p1973_Seonah |
Aporte de: |
id |
todo:paper_01928651_v30_n13_p1973_Seonah |
---|---|
record_format |
dspace |
spelling |
todo:paper_01928651_v30_n13_p1973_Seonah2023-10-03T15:09:09Z Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field Seonah, K. Orendt, A.M. Ferraro, M.B. Facelli, J.C. Crystal structure prediction Force fields GAFF Genetic algorithms AMBER force-field Cluster prediction Computer program Crystal structure prediction Distributed Computing Flexible molecules Force fields GAFF Local energy Modified genetic algorithms Parallel genetic algorithms Standard force field Clustering algorithms Computer science Genetic algorithms Molecules Parallel algorithms Crystal structure algorithm article computer simulation crystallization genetics Algorithms Computer Simulation Crystallization Genetics This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. © 2009 Wiley Periodicals, Inc. Fil:Ferraro, M.B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Facelli, J.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_01928651_v30_n13_p1973_Seonah |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Crystal structure prediction Force fields GAFF Genetic algorithms AMBER force-field Cluster prediction Computer program Crystal structure prediction Distributed Computing Flexible molecules Force fields GAFF Local energy Modified genetic algorithms Parallel genetic algorithms Standard force field Clustering algorithms Computer science Genetic algorithms Molecules Parallel algorithms Crystal structure algorithm article computer simulation crystallization genetics Algorithms Computer Simulation Crystallization Genetics |
spellingShingle |
Crystal structure prediction Force fields GAFF Genetic algorithms AMBER force-field Cluster prediction Computer program Crystal structure prediction Distributed Computing Flexible molecules Force fields GAFF Local energy Modified genetic algorithms Parallel genetic algorithms Standard force field Clustering algorithms Computer science Genetic algorithms Molecules Parallel algorithms Crystal structure algorithm article computer simulation crystallization genetics Algorithms Computer Simulation Crystallization Genetics Seonah, K. Orendt, A.M. Ferraro, M.B. Facelli, J.C. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field |
topic_facet |
Crystal structure prediction Force fields GAFF Genetic algorithms AMBER force-field Cluster prediction Computer program Crystal structure prediction Distributed Computing Flexible molecules Force fields GAFF Local energy Modified genetic algorithms Parallel genetic algorithms Standard force field Clustering algorithms Computer science Genetic algorithms Molecules Parallel algorithms Crystal structure algorithm article computer simulation crystallization genetics Algorithms Computer Simulation Crystallization Genetics |
description |
This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. © 2009 Wiley Periodicals, Inc. |
format |
JOUR |
author |
Seonah, K. Orendt, A.M. Ferraro, M.B. Facelli, J.C. |
author_facet |
Seonah, K. Orendt, A.M. Ferraro, M.B. Facelli, J.C. |
author_sort |
Seonah, K. |
title |
Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field |
title_short |
Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field |
title_full |
Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field |
title_fullStr |
Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field |
title_full_unstemmed |
Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field |
title_sort |
crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field |
url |
http://hdl.handle.net/20.500.12110/paper_01928651_v30_n13_p1973_Seonah |
work_keys_str_mv |
AT seonahk crystalstructurepredictionofflexiblemoleculesusingparallelgeneticalgorithmswithastandardforcefield AT orendtam crystalstructurepredictionofflexiblemoleculesusingparallelgeneticalgorithmswithastandardforcefield AT ferraromb crystalstructurepredictionofflexiblemoleculesusingparallelgeneticalgorithmswithastandardforcefield AT facellijc crystalstructurepredictionofflexiblemoleculesusingparallelgeneticalgorithmswithastandardforcefield |
_version_ |
1807315738529103872 |