Density of the set of generators of wavelet systems
Given a function ψ in L2(Rd), the affine (wavelet) system generated by ψ, associated to an invertible matrix a and a lattice Γ, is the collection of functions {|det a|j/2ψ (ajx - γ) : j ∈ Z, γ ∈ Γ}. In this paper we prove that the set of functions generating affine systems that are a Riesz basis of...
Guardado en:
Autores principales: | Cabrelli, C., Molter, U.M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01764276_v26_n1_p65_Cabrelli |
Aporte de: |
Ejemplares similares
-
Density of the set of generators of wavelet systems
por: Cabrelli, Carlos Alberto, et al.
Publicado: (2007) -
Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2(ℝd)
por: Aldroubi, A., et al. -
Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2(ℝd)
Publicado: (2004) -
A primer on wavelets and their scientific applications /
por: Walker, James S.
Publicado: (1999) -
A primer on wavelets and their scientific applications /
por: Walker, James S.
Publicado: (1999)