A DFT study of phenol adsorption on a low doping Mn-Ce composite oxide model
Density functional theory calculations (DFT + U) were performed on a low doping Mn-Ce composite oxide prepared from experimental data, including X-ray diffraction (XRD) and temperature-programmed reduction (TPR). We considered a 12.5% Mn-doped CeO 2 solid solution with fluorite-type structure, where...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01694332_v359_n_p14_Dialessandro |
Aporte de: |
Sumario: | Density functional theory calculations (DFT + U) were performed on a low doping Mn-Ce composite oxide prepared from experimental data, including X-ray diffraction (XRD) and temperature-programmed reduction (TPR). We considered a 12.5% Mn-doped CeO 2 solid solution with fluorite-type structure, where Mn replaces Ce 4+ leading to an oxygen-deficient bulk structure. Then, we modeled the adsorption of phenol on the bare Ce 0.875 Mn 0.125 O 1.9375 (1 1 1) surface. We also studied the effect of water adsorption and dissociation on phenol adsorption on this surface, and compared the predictions of DFT + U calculations with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements. The experimental results allowed us to both build a realistic model of the low doping Mn-Ce composite oxide and support the prediction that phenol is adsorbed as a phenoxy group with a tilt angle of about 70° with respect to the surface. © 2015 Published by Elsevier B.V. |
---|