Matrix representations for toric parametrizations
In this paper we show that a surface in P3 parametrized over a 2-dimensional toric variety T can be represented by a matrix of linear syzygies if the base points are finite in number and form locally a complete intersection. This constitutes a direct generalization of the corresponding result over P...
Guardado en:
Autores principales: | Botbol, N., Dickenstein, A., Dohm, M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01678396_v26_n7_p757_Botbol |
Aporte de: |
Ejemplares similares
-
Matrix representations for toric parametrizations
por: Dickenstein, Alicia Marcela
Publicado: (2009) -
Implicitization of rational hypersurfaces via linear syzygies: A practical overview
por: Botbol, N., et al. -
Implicitization of rational hypersurfaces via linear syzygies: A practical overview
por: Dickenstein, Alicia Marcela
Publicado: (2016) -
The implicitization problem for φ{symbol} : Pn (P1)n + 1
por: Botbol, N.
Publicado: (2009) -
The implicitization problem for φ{symbol} : Pn (P1)n + 1
por: Botbol, N.