k-tuple colorings of the Cartesian product of graphs
A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known t...
Guardado en:
Autores principales: | Bonomo, F., Koch, I., Torres, P., Valencia-Pabon, M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0166218X_v245_n_p177_Bonomo |
Aporte de: |
Ejemplares similares
-
k-tuple colorings of the Cartesian product of graphs
por: Bonomo, Flavia, et al.
Publicado: (2017) -
k-tuple chromatic number of the cartesian product of graphs
por: Bonomo, F., et al. -
k-tuple chromatic number of the cartesian product of graphs
por: Bonomo, Flavia, et al.
Publicado: (2015) -
Neighbor-locating coloring: graph operations and extremal cardinalities
por: Hernando, Carmen, et al.
Publicado: (2018) -
Minimum sum set coloring of trees and line graphs of trees
por: Bonomo, F., et al.
Publicado: (2011)