Onset of classical behaviour after a phase transition
We analyze the onset of classical behaviour in a scalar field after a continuous phase transition, in which the system-field, the long wavelength order parameter of the model, interacts with an environment of its own short-wavelength modes. We compute the decoherence time for the system-field modes...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01039733_v35_n2B_p397_Rivers |
Aporte de: |
id |
todo:paper_01039733_v35_n2B_p397_Rivers |
---|---|
record_format |
dspace |
spelling |
todo:paper_01039733_v35_n2B_p397_Rivers2023-10-03T14:57:37Z Onset of classical behaviour after a phase transition Rivers, R.J. Lombardo, F.C. We analyze the onset of classical behaviour in a scalar field after a continuous phase transition, in which the system-field, the long wavelength order parameter of the model, interacts with an environment of its own short-wavelength modes. We compute the decoherence time for the system-field modes from the master equation and compare it with the other time scales of the model. Within our approximations the decoherence time is in general the smallest dynamical time scale. Demanding diagonalisation of the decoherence functional produces identical results. The inclusion of other environmental fields makes diagonalisation occur even earlier. Fil:Lombardo, F.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_01039733_v35_n2B_p397_Rivers |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We analyze the onset of classical behaviour in a scalar field after a continuous phase transition, in which the system-field, the long wavelength order parameter of the model, interacts with an environment of its own short-wavelength modes. We compute the decoherence time for the system-field modes from the master equation and compare it with the other time scales of the model. Within our approximations the decoherence time is in general the smallest dynamical time scale. Demanding diagonalisation of the decoherence functional produces identical results. The inclusion of other environmental fields makes diagonalisation occur even earlier. |
format |
JOUR |
author |
Rivers, R.J. Lombardo, F.C. |
spellingShingle |
Rivers, R.J. Lombardo, F.C. Onset of classical behaviour after a phase transition |
author_facet |
Rivers, R.J. Lombardo, F.C. |
author_sort |
Rivers, R.J. |
title |
Onset of classical behaviour after a phase transition |
title_short |
Onset of classical behaviour after a phase transition |
title_full |
Onset of classical behaviour after a phase transition |
title_fullStr |
Onset of classical behaviour after a phase transition |
title_full_unstemmed |
Onset of classical behaviour after a phase transition |
title_sort |
onset of classical behaviour after a phase transition |
url |
http://hdl.handle.net/20.500.12110/paper_01039733_v35_n2B_p397_Rivers |
work_keys_str_mv |
AT riversrj onsetofclassicalbehaviourafteraphasetransition AT lombardofc onsetofclassicalbehaviourafteraphasetransition |
_version_ |
1807316620867010560 |