DNA-binding specificity prediction with FoldX
With the advent of Synthetic Biology, a field between basic science and applied engineering, new computational tools are needed to help scientists reach their goal, their design, optimizing resources. In this chapter, we present a simple and powerful method to either know the DNA specificity of a wi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | SER |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00766879_v498_n_p3_Nadra |
Aporte de: |
Sumario: | With the advent of Synthetic Biology, a field between basic science and applied engineering, new computational tools are needed to help scientists reach their goal, their design, optimizing resources. In this chapter, we present a simple and powerful method to either know the DNA specificity of a wild-type protein or design new specificities by using the protein design algorithm FoldX. The only basic requirement is having a good resolution structure of the complex. Protein-DNA interaction design may aid the development of new parts designed to be orthogonal, decoupled, and precise in its target. Further, it could help to fine-tune the systems in terms of specificity, discrimination, and binding constants. In the age of newly developed devices and invented systems, computer-aided engineering promises to be an invaluable tool. © 2011 Elsevier Inc. All rights reserved. |
---|