Blow-up vs. global existence for quasilinear parabolic systems with a nonlinear boundary condition

We study the behavior of positive solutions of the system ut = div(a(u)∇u) + f(u, v) vt = div(b(v)∇u) + g(u, v) in Ω a bounded domain with the boundary conditions ∂u/∂η = r(u, v), ∂v/∂η = s(u, v) on ∂Ω and the initial data (u0, v0). We find conditions on the functions a, b, f, g, r, s that guarantee...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Acosta, G., Rossi, J.D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00442275_v48_n5_p711_Acosta
Aporte de:
Descripción
Sumario:We study the behavior of positive solutions of the system ut = div(a(u)∇u) + f(u, v) vt = div(b(v)∇u) + g(u, v) in Ω a bounded domain with the boundary conditions ∂u/∂η = r(u, v), ∂v/∂η = s(u, v) on ∂Ω and the initial data (u0, v0). We find conditions on the functions a, b, f, g, r, s that guarantee the global existence (or finite time blow-up) of positive solutions for every (u0, v0).