Linear combinations of generators in multiplicatively invariant spaces
Multiplicatively invariant (MI) spaces are closed subspaces of L2(ω, H) that are invariant under multiplication by (some) functions in L∞(ω); they were first introduced by Bownik and Ross (2014). In this paper we work with MI spaces that are finitely generated. We prove that almost every set of func...
Guardado en:
Autor principal: | Paternostro, V. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00393223_v226_n1_p1_Paternostro |
Aporte de: |
Ejemplares similares
-
Linear combinations of generators in multiplicatively invariant spaces
por: Paternostro, Victoria
Publicado: (2015) -
Shift-invariant spaces on LCA groups
por: Cabrelli, C., et al.
Publicado: (2010) -
Shift-invariant spaces on LCA groups
por: Cabrelli, C., et al. -
Shift-invariant spaces on LCA groups
por: Cabrelli, C., et al.
Publicado: (2010) -
Extra invariance of shift-invariant spaces on LCA groups
por: Anastasio, M., et al.
Publicado: (2010)