Existence, uniqueness and decay rates for evolution equations on trees
We study evolution equations governed by an averaging operator on a directed tree, showing existence and uniqueness of solutions. In addition we find conditions of the initial condition that allows us to find the asymptotic decay rate of the solutions as t → ∞. It turns out that this decay rate is n...
Guardado en:
Autores principales: | Del Pezzo, L.M., Mosquera, C.A., Rossi, J.D. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00325155_v71_n1_p63_DelPezzo |
Aporte de: |
Ejemplares similares
-
Existence, uniqueness and decay rates for evolution equations on trees
por: Del Pezzo, Leandro M., et al.
Publicado: (2014) -
Estimates for nonlinear harmonic measures on trees
por: Del Pezzo, L.M., et al. -
Estimates for nonlinear harmonic measures on trees
por: Del Pezzo, Leandro M., et al.
Publicado: (2014) -
Upper bounds for the decay rate in a nonlocal p-Laplacian evolution problem
por: Esteve, C., et al. -
Upper bounds for the decay rate in a nonlocal p-Laplacian evolution problem
por: Rossi, Julio Daniel
Publicado: (2014)