Fast computation of a rational point of a variety over a finite field
We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time-space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input...
Guardado en:
Autores principales: | Cafure, A., Matera, G. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00255718_v75_n256_p2049_Cafure |
Aporte de: |
Ejemplares similares
-
Fast computation of a rational point of a variety over a finite field
por: Cafure, A., et al.
Publicado: (2006) -
Fast computation of a rational point of a variety over a finite field
por: Cafure, A., et al.
Publicado: (2006) -
Fast computation of a rational point of a variety over a finite field
por: Cafure, Antonio Artemio, et al.
Publicado: (2006) -
An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field
por: Cafure, A., et al.
Publicado: (2007) -
An effective Bertini theorem and the number of rational points of a normal complete intersection over a finite field
por: Cafure, A., et al.