Estimates for eigenvalues of quasilinear elliptic systems
In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a reg...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p102_DeNapoli |
Aporte de: |
Sumario: | In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve. © 2006 Elsevier Inc. All rights reserved. |
---|