Theoretical prediction of atomic and electronic structure of neutral Si6 Om (m=1-11) clusters

In this paper we found the most stable structures of silicon-oxide clusters of Si6 Om (m=1-11) by using the genetic algorithm. In this work the genetic algorithm uses a semiempirical energy function, MSINDO, to find the best cluster structures of Si6 Om (m=1-11). The best structures found were furth...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Caputo, M.C., Oña, O., Ferraro, M.B.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00219606_v130_n13_p_Caputo
Aporte de:
Descripción
Sumario:In this paper we found the most stable structures of silicon-oxide clusters of Si6 Om (m=1-11) by using the genetic algorithm. In this work the genetic algorithm uses a semiempirical energy function, MSINDO, to find the best cluster structures of Si6 Om (m=1-11). The best structures found were further optimized using the density functional theory. We report the stable geometries, binding energies, lowest unoccupied molecular orbital-highest occupied molecular orbital gap, dissociation energies for the most favorable fragmentation channels and polarizabilities of Si6 Om (m=1-11). For most of the clusters studied here we report structures not previously found using limited search approaches on common structural motifs. © 2009 American Institute of Physics.