Games for eigenvalues of the Hessian and concave/convex envelopes
We study the PDE λj(D2u)=0, in Ω, with u=g, on ∂Ω. Here λ1(D2u)≤…≤λN(D2u) are the ordered eigenvalues of the Hessian D2u. First, we show a geometric interpretation of the viscosity solutions to the problem in terms of convex/concave envelopes over affine spaces of dimension j. In one of our main res...
Guardado en:
Autores principales: | , |
---|---|
Formato: | INPR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00217824_v_n_p_Blanc |
Aporte de: |
id |
todo:paper_00217824_v_n_p_Blanc |
---|---|
record_format |
dspace |
spelling |
todo:paper_00217824_v_n_p_Blanc2023-10-03T14:20:53Z Games for eigenvalues of the Hessian and concave/convex envelopes Blanc, P. Rossi, J.D. Concave/convex envelopes Eigenvalues of the Hessian Games We study the PDE λj(D2u)=0, in Ω, with u=g, on ∂Ω. Here λ1(D2u)≤…≤λN(D2u) are the ordered eigenvalues of the Hessian D2u. First, we show a geometric interpretation of the viscosity solutions to the problem in terms of convex/concave envelopes over affine spaces of dimension j. In one of our main results, we give necessary and sufficient conditions on the domain so that the problem has a continuous solution for every continuous datum g. Next, we introduce a two-player zero-sum game whose values approximate solutions to this PDE problem. © 2018 Elsevier Masson SAS INPR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00217824_v_n_p_Blanc |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Concave/convex envelopes Eigenvalues of the Hessian Games |
spellingShingle |
Concave/convex envelopes Eigenvalues of the Hessian Games Blanc, P. Rossi, J.D. Games for eigenvalues of the Hessian and concave/convex envelopes |
topic_facet |
Concave/convex envelopes Eigenvalues of the Hessian Games |
description |
We study the PDE λj(D2u)=0, in Ω, with u=g, on ∂Ω. Here λ1(D2u)≤…≤λN(D2u) are the ordered eigenvalues of the Hessian D2u. First, we show a geometric interpretation of the viscosity solutions to the problem in terms of convex/concave envelopes over affine spaces of dimension j. In one of our main results, we give necessary and sufficient conditions on the domain so that the problem has a continuous solution for every continuous datum g. Next, we introduce a two-player zero-sum game whose values approximate solutions to this PDE problem. © 2018 Elsevier Masson SAS |
format |
INPR |
author |
Blanc, P. Rossi, J.D. |
author_facet |
Blanc, P. Rossi, J.D. |
author_sort |
Blanc, P. |
title |
Games for eigenvalues of the Hessian and concave/convex envelopes |
title_short |
Games for eigenvalues of the Hessian and concave/convex envelopes |
title_full |
Games for eigenvalues of the Hessian and concave/convex envelopes |
title_fullStr |
Games for eigenvalues of the Hessian and concave/convex envelopes |
title_full_unstemmed |
Games for eigenvalues of the Hessian and concave/convex envelopes |
title_sort |
games for eigenvalues of the hessian and concave/convex envelopes |
url |
http://hdl.handle.net/20.500.12110/paper_00217824_v_n_p_Blanc |
work_keys_str_mv |
AT blancp gamesforeigenvaluesofthehessianandconcaveconvexenvelopes AT rossijd gamesforeigenvaluesofthehessianandconcaveconvexenvelopes |
_version_ |
1807319499850907648 |