Clique-perfectness and balancedness of some graph classes
A graph is clique-perfect if the maximum size of a clique-independent set (a set of pairwise disjoint maximal cliques) and the minimum size of a clique-transversal set (a set of vertices meeting every maximal clique) coincide for each induced subgraph. A graph is balanced if its clique-matrix contai...
Guardado en:
Autores principales: | Bonomo, F., Durán, G., Safe, M.D., Wagler, A.K. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00207160_v91_n10_p2118_Bonomo |
Aporte de: |
Ejemplares similares
Ejemplares similares
-
Clique-perfectness and balancedness of some graph classes
por: Bonomo, Flavia, et al.
Publicado: (2014) -
On probe 2-clique graphs and probe diamond-free graphs
por: Bonomo, Flavia, et al.
Publicado: (2015) -
On probe 2-clique graphs and probe diamond-free graphs
por: Bonomo, F., et al. -
Partial characterizations of clique-perfect graphs II: Diamond-free and Helly circular-arc graphs
por: Bonomo, Flavia, et al.
Publicado: (2009) -
Partial characterizations of clique-perfect graphs II: Diamond-free and Helly circular-arc graphs
por: Bonomo, F., et al.