A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes
A virtual element method is introduced for the mixed approximation of a simple model problem for the Laplace operator on a polyhedron. The method is fully analysed when the meshes are made up of triangular right prisms, pyramids and tetrahedra. The local discrete spaces coincide with the lowest orde...
Guardado en:
Autores principales: | Jawtuschenko, A.B., Lombardi, A.L. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00080624_v56_n2_p_Jawtuschenko |
Aporte de: |
Ejemplares similares
-
A mixed discretization of elliptic problems on polyhedra using anisotropic hybrid meshes
Publicado: (2019) -
Interpolation error estimates for edge elements on anisotropic meshes
por: Lombardi, Ariel L.
Publicado: (2011) -
Interpolation error estimates for edge elements on anisotropic meshes
por: Lombardi, A.L. -
Error estimates for raviart-thomas interpolation of any order on anisotropic tetrahedra
por: Acosta Rodriguez, Gabriel, et al.
Publicado: (2010) -
Error estimates for raviart-thomas interpolation of any order on anisotropic tetrahedra
por: Acosta, G., et al.